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1 Introduction

The AdS/CFT correspondence [1] has shed new light on how to think about gauge theories

and gravity theories in general. It is natural to try to find such a way of understanding

gravity with a background we live in, namely, in deSitter space. There have been many

ideas put forth on how to think about such matters [2–8]. The current view expressed

in the literature is that since a boundary theory of such a correspondence would have to

lie at timelike infinity, one would have to take into account bubble nucleation for realistic

theories. The argument is that if we have finite probability for bubble nucleation(which

is very possible by semi-classical arguments such as [9]) for any path we take to future

timelike infinity, we must encounter some kind of bubble nucleation along the way.

Thus it is natural to consider quantum gravity in backgrounds with bubble nucleation,

for example that described by a Coleman-De Luccia(CDL) instanton [10]. The Penrose

diagram of this instanton (the ‘bounce’ as they put it) is shown in figure 1. If we consider

the timelike flat region(region A) of this background in D dimensions, it has a well defined

spatial infinity at Σ, which is a SD−2.

Freivogel, Sekino, Susskind, and Yeh proposed that there may well be some kind of

holographic correspondence between the bulk theory in region A and its boundary Σ in [5].

A further interpretation of the consequences of this calculation was pursued in [6]. In

these papers, they have proposed that in 4 dimensions, the holographic dual living at Σ

corresponding to the bulk gravity theory would be a Liouville theory. Furthermore, they

have identified the conformal time coordinate with the Liouville field on the boundary. If

this were true, time in the bulk would be emergent from a Liouville field on the boundary.

This was suggested by writing out the two point functions in a manner that made the

(potentially) holographic structure more evident and analyzing relevant pieces that showed

up in this propagator. What we will do in this paper is to further carry out this analysis

to higher dimensions.

We will do this by obtaining the two point function of the transverse traceless graviton

and scalar in this background. This has been done in the past in 4 dimensions [5, 11], but

we extend the calculation to general dimensions.

This calculation is meaningful in three ways. First, doing a ‘holographic expansion’

of the propagators in a general dimensional background gives a clear framework as to how

to do such an expansion in the 4 dimensional case. Having an explicit D in the expansion

helps organizing the terms in the expression for the propagators.

– 1 –
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Figure 1. The Penrose diagram for the Coleman-De Luccia instanton. The bold curve in the grey

region is the bubble wall. The space is flat to the left of the wall, and deSitter to the right side of

the wall.

Also, exploring a potential holographic duality of this kind in general dimensions turns

out to be an interesting topic in itself. It would be very interesting to see which statements

FSSY have set forth for the 4 dimensional case still hold in general dimensions. As we

shall see, all of their conjectures regarding the existence of a holographic duality could

be repeated with slight modification for the general dimensional case. In fact, the clearer

organization of the terms in the holographic expansion enables us to say a bit more.

Last but not least, we expect gravity in odd and even dimensions to behave very

differently, and it will be interesting to see how this shows in the propagator. We will be

able to see that if such a correspondence existed, the boundary theory would in fact be

very different for odd and even dimensions.

In this paper, we will consider a theory with gravity and a single scalar field with a

potential that has two minima in a general dimensional space. We assume the thin wall

limit can be applied, that is, that there is a classical solution of the theory where we have

two distinct regions of space with different cosmological constants seperated by a thin wall.

We will be interested in the case where we have a flat space inside the bubble and a de

Sitter space outside. We will review this background — the CDL instanton — in section 2.

The thin wall introduces a boundary in our space. We will calculate two point functions

of the transeverse traceless graviton field and the scalar field inside the timelike region of

the thin wall, and take it to the infinite boundary of the thin wall(which is a SD−2) and

see how it behaves.

– 2 –
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We will do this for the graviton two point function in section 3. We will follow the

standard procedure of first calculating the two point function of the graviton on the Eu-

clidean instanton, and then analytically continuing it to Lorentzian signature [12]. After

that, we will write this as a sum of massive tensor field propagators in HD−1. We will not

be interested in the ordinary part of the propagator, but the part of the propagator that

arises due to the existence of the wall.

As pointed out in [11, 13] the propagator obtained would still have some residual

gauge freedom we have to project out. We will explain in section 4.1 the ‘naive way’ of

projecting out those degrees of freedom. We will obtain the propagator after this projection

in section 4.2. Finally, in section 4.3 we will point out the subtlety overlooked by the method

of projection employed in section 4.1 and present the final gauge-fixed two point function.

We will summarize the graviton two point function and examine important features

we see in it in section 5.

A similar calculation for the scalar is done in section 6. The final ‘holographic expan-

sion’ for the scalar is written out in section 6.7 when the scalar is massless and in section 6.8

for the general case. A major difference of the scalar case with the graviton case is pointed

out in the latter section as well.

Finally, we will interpret the results in section 7. In this section, we try to guess

what the theory living on the boundary SD−2 would look like if we assume a holographic

correspondence, as there are a number of interesting proposals we could make just from

the ‘holographic expansion’ of the propagators.

We first propose the conformal structure of the theory living on the boundary, and ar-

gue that it is highly possible that it contains gravity. We also propose a possible holographic

correspondence between fields in the bulk with operators on the boundary. We see how the

tunable dimensionful parameter of the theory, namely the wall position, plays a role in this

correspondence. We pay special attention to the operators whose conformal dimensions

depend on the wall position. We mention that the number of these are finite in even dimen-

sions, while they are infinite in odd dimensions. Based on the behavior of these operators,

we note that in odd dimensions, some kind of phase transition seems to happen as the

dimensions of infinitely many operators become complex at a critical position of the wall.

As one of the objectives of the paper is to present a thorough description of the

calculation procedure of the graviton two point function, there are many technical details

that might be uninteresting to some readers. I believe reading section 2 for understanding

the instanton background we are working in, and sections 5 and 7 for seeing the results and

implications of the calculation would be enough for those who wish to skip such details.

2 The background

We consider a theory with gravity and a single scalar field φ with a potential V (φ), in a D

dimensional space. We assume D is even.

– 3 –
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By setting κ = 8πG = 1/2, our Lagrangian would look like,

S =
1

2

∫
dDx

√−g(−gµν∇µφ∇νφ− 2V (φ) + 2R) (2.1)

where we use the sign convention, (− + + · · ·+). We wish to obtain a classical solution

for this action, and expand around that background. Now V in general could be anything,

but we are interested in the situation of tunneling between ground states with positive and

zero scalar vacuum expectation values. Hence we assume that V has two local minima,

each at φ+, φ−, with V (φ+) > V (φ−) = 0.

We may follow the course of Euclideanizing the action, solving for it, then analytically

continuing it. Also, we assume an O(D − 1) symmetry of the solution for Euclidean

metric, and furthermore assume that the classical solution for φ is only a function of the

radial coordinate. This symmetry may not exist for all classical solutions, but we are not

interested in cases that do not respect this symmetry. So we may begin by setting the

metric of the D dimensional Euclidean manifold as,

ds2 = dt2 + a(t)2(dθ2 + sin2 θdΩ2
D−2) (2.2)

Then we obtain the classical solution by solving,

φ̈+ (D − 1)
ȧ

a
φ̇ =

dV

dφ
(2.3)

ȧ2 = 1 +
a2

(D − 1)(D − 2)

(
1

2
φ̇2 − V (φ)

)
(2.4)

with boundary conditions,

ȧ = 1 (t = 0), ȧ = −1 (t = t1), φ̇ = 0 (t = 0, t = t1) (2.5)

where the dot implies differentiation with respect to t. These boundary conditions corre-

spond to the situation where we have φ settled safely at their minima for coordinates, t =

0, t1. We are particularly interested in the thin wall limit, where we may approximate, φ =

φ− for t < t0 and φ = φ+ for t > t0. This would correspond to a ‘bubble’ with different cos-

mological constants on either side. The metric would yield as that of a maximally symmet-

ric space with given cosmological constants. Since we have assumed that V (φ+) > V (φ−) =

0, we would have a flat space in the region t < t0 and (Euclidean) de Sitter space in t > t0.

Before turning back to Lorentzian signature, we wish to convert to conformal coordi-

nates, that is, coordinates such that,

dX = dt/a(t) (2.6)

Then we may write the metric as,

ds2 = a2(X)(dX2 + dθ2 + sin2 θdΩ2
D−2) (2.7)

– 4 –
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The metric for the CDL instanton can be written in this coordinate system as,

a(X) =

{
eX−X0

cosh X0
(X < X0)

1
cosh X (X > X0)

(2.8)

The analytic continuation required to obtain the timelike flat region is,

X = T + iπ/2, ia(T ) = a(T + iπ/2), θ → iR (µ→ il) (2.9)

which sends slices of (D − 1)-spheres to slices of (D − 1)-hyperbolic spaces. The µ is the

geodesic distance on the sphere, where l is the geodesic distance on the hyperbolic space.

This yields the metric,

ds2 = a(T )2(−dT 2 + dR2 + sinh2RdΩ2
D−2) = a(T )2(−dT 2 + dH2

D−1) (2.10)

where now,

a(T ) =

(
e−X0

coshX0

)
eT (2.11)

which provides the metric for the timelike region inside the bubble. dH2
n denotes the metric

for the n-dimensional hyperbolic space. Note that we have a well defined spatial infinity

in this region, namely at R → ∞ which is an SD−2. With respect to figure 1, this metric

describes region A. The thin curves inside this region denotes constant T slices which are

HD−1s. Σ is at R→ ∞. We will be obtaining the graviton and scalar propagator between

two points in this region and taking it to the boundary Σ.

It will prove convenient to use Poincaré coordinates to describe the hyperbolic slices,

in which case we obtain the metric,

ds2 = a(T )2

(
−dT 2 +

dz2 + dx2
1 + · · · + dx2

D−2

z2

)
(2.12)

In these coordinates, Σ lies at z → 0.

For our purposes we are not interested in the spacelike region of the CDL background,

but for the sake of the completeness in the argument, the continuation that yields the

metric for this region is,

θ → it′ + π/2 (2.13)

which results in the metric,

ds2 = a2(X)(dX2 − dt′2 + cosh2 t′dΩ2
D−2) (2.14)

This describes region B of figure 1, where the thin curves inside the region denotes constant

X slices, and the thick bubble wall is at X = X0.

These two regions are patched together at T = −∞ and X = −∞, which is the thick

line in figure 1 that divides region A and B.

– 5 –
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3 The transverse-traceless graviton propagator

3.1 The equation of motion

We first calculate the transverse-traceless tensor propagator on the Euclidean manifold and

writing it out in a form that has a natural analytic continuation. After that, we will do the

analytic continuation (2.9) to the timelike region inside the bubble of our CDL background

and obtain the desired propagator respectively.

Taking the metric for a unit SD−1 to be g̃ij , the whole background metric can be

written as,

gµν =

(
a(X)2 0

0 a(X)2g̃ij

)
(3.1)

Also, for convenience, we define,

N ≡ D − 2

2
(3.2)

We write the metric as,

gµν + δgµν (3.3)

where gµν is the background metric.

We are interested in the O(D − 1), gauge invariant perturbation,1

δgµν =

(
0 0

0 a(X)2hij

)
(3.4)

where hij is transverse, traceless on SD−1, that is,

∇̃ihij = 0, hi
i = 0 (3.5)

where ∇̃ is the covariant derivative with respect to the metric g̃ij . (We will use lowercase

greek letters to denote coordinates in D dimensions, and use letters from the english al-

phabets to denote coordinates in its (D−1) slices, be it Euclidean or Lorentzian.) It turns

out that,

∇µδgµν = 0, δgµ
µ = 0 (3.6)

where ∇ is the covariant derivative with respect to the metric gij . Hence δgµν is transverse

traceless with respect to gij also. Defining,

h̃ij = a(D−2)/2(X)hij (3.7)

the relevant part of the action concerning h̃ij is,

S =
1

2

∫
dXdΩD−1

√
g̃h̃ij

[
−∂2

X + U(X) + 2 − �̃

]
h̃ij (3.8)

1The argument that these perturbations are gauge invariant are presented in various literature, for

example in [13]. We will later point out a subtlety that arises in H
D−1, namely that certain modes we have

to consider turn out to depend on gauge. We will address these issues in section 4.

– 6 –



J
H
E
P
0
6
(
2
0
0
9
)
0
2
3

where �̃ = ∇̃i∇̃i, g̃ = detg̃ij and U is defined as,

U ≡ (aN )′′/aN (3.9)

where f ′ denotes df/dX, and a(X) is given by (2.8).

Hence if we define,

Ĝij
i′j′(X1,X2,Ω1,Ω2) = aN (X1)a

N (X2) < hij(X1,Ω1)hi′j′(X2,Ω2) > (3.10)

this satisfies,

[
−∂2

X1
+ U(X1) + 2 − �̃1

]
Ĝij

i′j′(X1,X2,Ω1,Ω2) =
1√
g̃
δ(X1 −X2)δ

ij
i′j′(Ω1,Ω2) (3.11)

where δij
i′j′(Ω1,Ω2) is the normalized projection operator onto transverse traceless tensors

on SD−1. The subscript 1 implies differentiation with respect to the coordinates, (X1,Ω1).

It’s worth reminding ourselves again that we are working on a Euclidean manifold.

3.2 Decomposition

Due to the O(D−1) symmetry, the Green’s function Gij
i′j′ has to respect all the isometries

of the (D−1) sphere with respect to the SD−1 coordinates of the two points involved, i.e. it

should be a maximally symmetric bitensor with respect to its SD−1 coordinates. Therefore

it should be possible the write it as,

Ĝij
i′j′(X,X

′, µ) (3.12)

where µ(Ω1,Ω2) is the geodesic distance between the two points Ω1,Ω2 (see [14] for further

discussion).

The solution for the equation (3.11) can be written as,

Ĝij
i′j′(X,X

′, µ) =
+i∞∑

p=(N+2)i

Gp(X,X
′)W ij

(p)i′j′(µ) (3.13)

We will define Gp and W ij
(p)i′j′(µ), and explain the range of the sum soon.

W ij
(p)i′j′(µ) is a maximally symmetric bitensor on SD−1 defined by,

W ij
(p)i′j′(µ) =

∑

u

q(pu)ij†(Ω)q
(pu)
i′j′ (Ω′) (3.14)

where q(pu)ij are transeverse traceless eigenmodes of

�̃q(pu)ij = (N2 + 2 + p2)q(pu)ij (3.15)

where u denotes all the quantum numbers other than p needed to specify the mode q.

These modes are normalized so that
∫
dD−1x

√
g̃q(pu)ijq

(p′u′)∗
ij = δpp′δuu′

(3.16)

– 7 –
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Note that by definition W ij
(p)i′j′(µ) satisfies,

�̃W ij
(p)i′j′(µ) = (N2 + 2 + p2)W ij

(p)i′j′(µ) (3.17)

and is transverse(for all the indices) and traceless(for each pair ij and i′j′) with respect

to g̃ij .

Also, on SD−1, we get eigenmodes that are regular on the whole sphere only for the p

values, p = (N + 2)i, (N + 3)i, . . . (see [15]) so by completeness of the basis,

+i∞∑

p=(N+2)i

W ij
(p)i′j′(µ(Ω,Ω′)) = δij

i′j′(Ω,Ω
′)/
√
g̃ (3.18)

We define Gp to be the X,X ′ dependent function that satisfies,

[
−∂2

X + U(X) − (p2 +N2)
]
Gp(X,X

′) = δ(X −X ′) (3.19)

From equations (3.17), (3.18), and (3.19), we see that indeed (3.13) solves (3.11).

3.3 Gp(X,X
′)

In order to obtain Gp(X,X
′) satisfying (3.19), let’s first think about Fk(X) which satisfy

[
− d2

dX2
+ U(X)

]
Fk(X) = (k2 +N2)Fk(X) (3.20)

for a uniform background without any kind of wall. We think about the cases when,

a ∝ (1/ coshX), eX each corresponding to the dS, and flat background.

Then, defining,

W ≡ ln(aN ), w ≡ ln a (3.21)

we get,

U(X) = W ′2 +W ′′ = (N + 1)Nw′2 −N (3.22)

Ũ(X) = W ′2 −W ′′ = N(N − 1)w′2 +N (3.23)

where we’ve used the property,

w′2 − w′′ = 1 (3.24)

The equation,

[
− d2

dX2
+N(N + 1)w′2 −N

]
Fk = (N2 + k2)Fk (3.25)

can be solved in terms of the hypergeometric function F (a, b; c; z) by,

Fk,dS ≡ eikXF (−N,N + 1; 1 − ik; (1 − tanhX)/2) (3.26)

– 8 –
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for dS, and

Fk,F lat ≡ eikX (3.27)

for flat space, where we took the boundary conditions to be,

Fk,dS → eikX X → ∞ (3.28)

Fk,F lat → eikX X → −∞ (3.29)

Now let’s introduce the wall. If we have different w′ for X > X0 and X < X0, we get,

w′2 − w′′ = 1 +A0δ(X −X0) (3.30)

for,

A0 = eX0/ coshX0 (3.31)

Hence if we define A ≡ −NA0, the Schrödinger equation,
[
− d2

dX2
+ U(X)

]
uk = Ekuk (3.32)

for U(X) defined by (3.9) for (2.8) becomes,
[
− d2

dX2
+N(N + 1)w′ −N +Aδ(X −X0)

]
uk = Ekuk (3.33)

where w = − ln(coshX) for X > X0 and w = X + (constant) for X < X0.

Since we already know the eigenfunctions in the separate domains X > X0 and X <

X0, the equation can be solved by finding how these waves scatter off the domain wall. For

unbounded states, we may write,

u1k =

{
Fk,L + RF−k,L (X < X0)

TFk,R (X > X0)
(3.34)

u2(−k) =

{
TrF−k,L (X < X0)

F−k,R + RrFk,R (X > X0)
(3.35)

for Ek = k2 +N2 where,

Fk,L = Fk,F lat, Fk,R = Fk,dS (3.36)

and R,T,Rr,Tr are scattering coefficients which depend on k.

Solving the boundary conditions to obtain the reflection coefficient R, we obtain,

R = −e2ikX0
[F ′

k,R(X0) −AFk,R(X0)] − ikFk,R(X0)

[F ′
k,R(X0) −AFk,R(X0)] + ikFk,R(X0)

= e2ikX0R (3.37)

where R can be written in terms of hypergeometric functions as,

R = −N(1 − t)F (−N + 1, N + 1; 1 − ik; t)

(ik +N)F (−N,N ; 1 − ik; t)
, t =

e−X0

2 coshX0
(3.38)

We note the following properties of R:

1. The poles ian of R in the upper half plane correspond to bound states. They are

purely imaginary, and an ≤ N .

– 9 –
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2. Regardless of the value of X0, k = iN is always a pole of R.

When N is an integer, R has the following properties.

1. R is a rational function with respect to k.

2. R has N other poles, which are pure imaginary and lie between (−iN, iN).

3. In the limit X0 → −∞, the poles other than iN tend to 0, i, . . . , i(N − 1).

4. In the limit X0 → ∞, the poles other than iN tend to −i,−2i, . . . ,−iN .

5. k = −iN is always a zero of R.

When N is a half integer, R exhibits some very interesting properties. As in the integer

case, all poles lie on the imaginary axis below k = iN , and has only a finite number of

poles in [−iN, iN ], but in the limit k → −i∞ the pole structure varies starkly:

1. For X0 ≥ 0, R(k) has an infinite number of poles on the imaginary axis of the lower

half plane. (Appendix A)

2. For X0 < 0, R(k) has only a finite number of poles on the imaginary axis of the lower

half plane, but has an infinite number of complex poles on the lower half plane for

−ǫ < X0 < 0 for some ǫ > 0. (Appendix A)

Now we are ready to solve (3.19).

Gp(X,X
′) =

1

∆p
[Ψr

p(X)Ψl
p(X

′)Θ(X −X ′) + Ψl
p(X)Ψr

p(X
′)Θ(X ′ −X)] (3.39)

where Ψr
p(X) is the solution to the Schrödinger equation (3.33), that goes to eipX as

X → ∞, and Ψl
p(X) the solution that goes to e−ipX as X → −∞. ∆p is defined to be the

Wronskian of Ψr
p and Ψl

p.

Since we can write Ψr
p(X), Ψl

p(X) in terms of uk, namely,

Ψr
p(X) = u1p(X), Ψl

p(X) = u2(−p)(X) (3.40)

and for the flat side of the bubble, we get,

Gp(X,X
′) =

i

2p

(
eipδX + R(p)e−ipX̄

)
(X,X ′ < X0) (3.41)

where

δX =

{
X −X ′ (X > X ′)

X ′ −X (X ′ > X)
(3.42)

X̄ = X +X ′ (3.43)

and the reflection coefficient is given by (3.37).
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3.4 W ij
(p)i′j′(µ)

The calculation of the maximally symmetric bitensor W ij
(p)i′j′(µ) in this section is carried

out follwing the steps of [16].

A maximally symmetric bitensor in general can be written as,

Tiji′j′ =t1gijgi′j′ + t2[nigji′nj′ + njgii′nj′ + nigjj′ni′ + njgij′ni′ ]

+ t3[gii′gjj′ + gji′gij′ ] + t4ninjni′nj′ + t5[gijni′nj′ + ninjgi′j′ ]
(3.44)

where ti are functions of µ, the length of the geodesic that connects Ω and Ω′. Here,

ni(Ω,Ω
′), n′i(Ω,Ω

′) are unit vectors each at Ω and Ω′ pointing away from Ω′ and Ω respec-

tively. gj′

i is the parallel propagator along the geodesic.

By using the tracelessness of W ij
(p)i′j′(µ), we can write,

W ij
(p)i′j′(µ) =Qpw

I(αp(z))t
ij
I i′j′ |z=cos2(µ

2
) (3.45)

where we have defined

z ≡ cos2
(µ

2

)
(3.46)

and

tij1 i′j′ = [gij − (D − 1)ninj][gi′j′ − (D − 1)ni′nj′ ] (3.47)

tij2 i′j′ = 4n(igj)(i′nj′) + 4ninjni′nj′ (3.48)

tij3 i′j′ = gii′gjj′ + gji′gij′ − 2gijni′nj′ − 2ninjgi′j′ − 2(D − 1)ninjni′nj′ (3.49)

tiji′j′ = tij1 i′j′ −Ntij2 i′j′ −Ntij3 i′j′ (3.50)

We refer the reader to appendix B for the explicit expression for wI(αp(z)) and Qp. We

also have defined tiji′j′ which will come in handy later.

We first obtain wI(αp(z)) starting from equation (3.45) up to a constant by imposing

transverseness and the condition (3.17). The result is given by equation (B.2).

The normalization constant Qp given by equation (B.4) is obtained by considering the

degeneracy of the modes q
(pu)
ij . More specifically, this is done by contracting i′j′ and ij and

taking Ω = Ω′ in equation (3.14) and integrating over the whole sphere by Ω. By doing this,

from (3.45), the r.h.s. of the contracted and integrated (3.14) would yield some numerical

constant(which can be obtained from (B.2)) times Qp times the volume of the (D − 1)

sphere. The l.h.s. of the contracted and integrated (3.14) would yield the degeneracy of

the modes q
(pu)
ij with given p, due to equation (3.16).

Note that in order for αp and βp defined by (B.1), (B.3) to be well defined, and hence

W ij
(p)i′j′

(µ) to be well defined on the whole sphere (for all 0 ≤ z ≤ 1) p must have the values

p = i(N + 2), i(N + 3), . . . .

3.5 Analytic continuation

Since we have obtained Gp(X,X
′) andW ij

(p)i′j′ showing up in equation (3.13) in the previous

two sections, it is straight forward to write down the hatted propagator for the instanton.
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Figure 2. The contour C1.

p

N−1

N

C

Figure 3. The contour C.

The problem is that we want to analytically continue this to the time-like Lorentzian region

of our background (namely to carry out equation (2.9)) but this is not a trivial thing to do.

The problem is that we want to think about the propagator as we take the points

concerned to the boundary sitting at spacelike infinity(l: large) of this region. But by

plugging in (2.9) to (3.13) we don’t get a convergent sum in this limit. This is because

W ij
(i(N+2+n))i′j′(il) ∼ e(2+n)ltij i′j′ (3.51)

for large l, as can be easily verified by the asymptotic limit of hypergeometric functions.

In order to achieve this objective, we must employ a more sophisticated method

previously utilized by various authors [5, 11–13]. The way do this is by expressing the

sum (3.13) as,

Ĝij
i′j′(X,X

′, µ) =

∫

C1

dp

2πi

Γ(−ip−N − 1)Γ(ip +N + 2)

(−1)−ip−N−2
(3.52)

×Gp(X,X
′)W ij

(p)i′j′(µ) (3.53)

where the contour C1 is defined to be one that comes down from i∞ on the left side of

the imaginary axis of the complex p plane, and pivots around p = i(N + 2) to go back to

i∞ by the right side of the imaginary axis. The Γ functions pick out the appropriate poles

with the desired residues. This is depicted in figure 2.

Plugging in (3.41) to the above expression, we obtain,

Ĝij
i′j′(X,X

′, µ) =

∫

C1

dp

4πp

Γ (−ip−N − 1) Γ(ip +N + 2)

(−1)−ip−N−2

× (eipδX + R(p)e−ipX̄)W ij
(p)i′j′(µ)

(3.54)

The first term yields the Green’s function for a flat background. Let’s focus our attention

to the second term, which we denote by Ĝij X̄
i′j′ .

Now this contour can be safely deformed to the contour C, which we define to run

along the real axis of the p plane, with a ‘jump’ over p = iN . This is depicted in figure 3.

The contour deformation is justified by the following reasons.
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First, by writing the previous equation as,

Ĝij X̄
i′j′(X,X

′, µ) =

∫

C1

dp

(
i

2p

)
eip(2X0−X̄)

1 − e2π(p−iN)
R(p)W ij

(p)i′j′(µ) (3.55)

Since X̄ − 2X0 < 0, the first piece in the integrand decays exponentially at infinity on

the upper half plane, as long as the contour does not pass through p = in. We also know

that F (a, b; c; z) ≈ 1 + O(1/|c|) for c→ ∞ so R(p) behaves nicely in this region.

Also, we note that αp can be written as,

αp(z) = F (N + 2 + ip,N + 2 − ip;N + 5/2; z)

= Γ(N + 5/2)(z − z2)3/2−NP
3/2−N
ip−1/2 (1 − 2z)

∼
(

1

−ip

)N−1

(3.56)

for p→ i∞ and hence W ij
(p)i′j′(µ) also behaves nicely.

Finally, there aren’t any poles in the integrand between iN and i(N + 2) on the

imaginary axis, (since by (B.4), W ij
(p)i′j′(µ) = 0 at p = i(N + 1)) so we may carry out the

deformation as we please. Hence,

Ĝij X̄
i′j′(X,X

′, µ) =

∫

C

dp

4πp

Γ(−ip−N − 1)Γ(ip +N + 2)

(−1)−ip−N−2
(3.57)

×R(p)e−ipX̄W ij
(p)i′j′(µ) (3.58)

Now let’s do the analytic continuation,

X = T + i
π

2
, µ = il (3.59)

Then after pulling out all the trivial constants out in front and sorting out the terms, the

analitically continued propagator piece Ĝij T̄
i′j′(T, T

′, l) can finally be written as,

Ĝij T̄
i′j′(T, T

′, l) = C0

∫

C
dpRe−ipT̄Y ij

(p)i′j′(il)

×(p2 + (N + 1)2)Γ(ip +N − 1)Γ(−ip +N − 1) (3.60)

where we have conveniently defined,

Y ij
(p)i′j′(il) ≡

1

Qp
W ij

(p)i′j′(il) = wI(αp(z))t
ij
I i′j′ |z=cosh2 l

2
(3.61)

3.6 The large l limit

In this section, we will write out the ‘holographic expansion’ for the graviton propagator,

i.e. in a form convenient to examine its potential holographic duality. In order to do this,

it is convenient to invoke the ‘generalized Green function’s we have defined in appendix C.

We first define,

ap(z) =

(
1

z

) (D+2)
2

−ip

F

(
D + 2

2
− ip,

1

2
− ip; 1 − 2ip;

1

z

)
(3.62)
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and then define Gij
H i′j′ to be,

Gij
H i′j′(l,∆) = wI(ai(∆−N))t

ij
I i′j′ |z=cosh2 l

2
(3.63)

At large l, (or for the Poincaré coordinates in HD−1, small z) this behaves as,

Gij
H i′j′(l,∆) ∼ C(∆−2N)(∆−2N+ 1)e−∆ltij i′j′ + O

(
e−(∆+2)l

)

∼ C(∆−2N)(∆−2N+ 1)
z∆z′∆

|x − x′|2∆ t
ij

i′j′ + O
(
z∆+2z′∆+2

|x− x′|2∆+4

)
(3.64)

The ∆ dependence of the coefficient of the leading order behavior will prove to be impor-

tant.2 Also,

Gij
H i′j′(l,∆) ∝ Gij

M i′J ′(l,∆(∆ − 2N)) (3.65)

for ∆ > N, ∆ 6= 2N , where Gij
M i′J ′(l,m) is the massive transverse traceless propagator

on HD−1 with mass m. We know from AdS/CFT that this corresponds to a two point

function for a dimension ∆ traceless tensor of the boundary theory of the EAdSD−1 [17].

Due to the identity between hypergeometric functions,

αp(z) =
Γ
(
N + 5

2

)
Γ(−2ip)

Γ(N + 2 − ip)Γ(1
2 − ip)

a−p(z) +
Γ(N + 5

2)Γ(2ip)

Γ(N + 2 + ip)Γ(1
2 + ip)

ap(z) (3.66)

so using the linearity of wI , we may write (3.60) as,

Ĝij T̄
i′j′ = C0

∫

C
dpRe−ipT̄

[
Γ(−ip)Γ(ip +N − 1)(N + 1 + ip)

2−2ip−1/2(N − ip)(N − 1 − ip)
wI(a−p)t

ij
I i′j′

+
Γ(ip)Γ(−ip+N − 1)(N + 1 − ip)

22ip−1/2(N + ip)(N − 1 + ip)
wI(ap)t

ij
I i′j′

]
(3.67)

where we have absorbed some overall factors into C0. We have used the fact that,

wI(αp(z)) = wI(c1aip(z) + c2a−ip(z)) = c1w
I(aip(z)) + c2w

I(a−ip(z)) (3.68)

This can be re-written as,

Ĝij T̄
i′j′ = C0

∫

C
dpRe−ipT̄

[
Γ(−ip)Γ(ip +N − 1)(N + 1 + ip)

2−2ip−1/2(N − ip)(N − 1 − ip)
Gij

H i′j′(l,N + ip)

+
Γ(ip)Γ(−ip +N − 1)(N + 1 − ip)

22ip−1/2(N + ip)(N − 1 + ip)
Gij

H i′j′(l,N − ip)

]
(3.69)

by (3.64). In the large l limit,

Gij
H i′j′(l,N ± ip) ∼ e−(N±ip)ltiji′j′ (3.70)

Hence in this limit, C for the former term of equation (3.69) may be deformed downward

while the latter term may be deformed upward. This is because the asymptotic behavior

2Thanks to Leonard Susskind and Yasuhiro Sekino in helping me realize this.
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Figure 4. The contour C−.
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C+

N−1
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Figure 5. The contour C+.

of all the other components in the product is at worst ∼ eap at |p| → ∞ on the half-plane

concerned for some fixed number a.

Define the contour C− to be the contour coming from −i∞ on the left side of the

imaginary axis, pivoting around p = iN and going back down to −i∞ on the right side

of the imaginary axis. Define the contour C+ to be the contour coming from i∞ on the

left side of the imaginary axis, pivoting around just above p = iN) and going back up to

i∞ on the right side of the imaginary axis. These are depicted in figure 4 and figure 5

respectively.

Now we may write,

Gij T̄
i′j′ = C0

∫

C−

dpRe(−N−ip)T̄ Γ(−ip)Γ(ip+N−1)(N+1 + ip)

2−2ip−1/2(N− ip)(N−1− ip)
Gij

Hi′j′(l,N+ ip)

+C0

∫

C+

dpRe(−N−ip)T̄ Γ(ip)Γ(−ip+N−1)(N+1 − ip)

22ip−1/2(N+ ip)(N−1+ ip)
Gij

Hi′j′(l,N− ip)

≡ I− + I+ (3.71)

Note that we have gotten rid of the hat on the propagator by multiplying it by e−NT̄ .

The poles of the integrand of I+ are given as the following.

1. p = in for integers n.

2. p = iN , p = i(N − 1)

3. p = −i(N − 1 + n) for non-negative integer n other than n = 2.

4. The poles of R (including p = iN).

The non-negative integer poles come from the gamma function while the negative integer

poles come from the poles of Gij
H i′j′(l,N − ip). Note that these poles may ‘pile up.’ For

example, when N is an integer, the pole p = iN becomes a triple pole due to the p = in

pole of the first line, the p = iN pole of the second line, and the p = iN pole that comes

from the reflection coefficient. Note that this is written for the general case. For special

values of X0 the zeros coming from R may cancel some poles mentioned above. For reasons

evident later, we mention the behavior of the integrand of I+ at p = iN and i(N − 1).
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1. p = iN is a triple(double) pole for integer(half-integer) N .

2. p = i(N − 1) is a double(single) pole for integer(half-integer) N .

The poles of the integrand of I− are given as the following.

1. p = in for integers n.

2. p = −iN , p = −i(N − 1)

3. p = i(N − 1 + n) for non-negative integer n other than n = 2.

4. The poles of R (including p = iN).

The non-positive integer poles come from the gamma function while the positive integer

poles come from the poles of Gij
H i′j′(l,N+ip). The features discussed about the latter piece

apply to this piece as well. One notable feature in this case is that p = −iN always turns out

to be a simple pole. To elaborate, for integer N , we get the contributions of the first line and

second line to get a double pole at −iN while a zero at −iN for R appears to make the pole

simple. This zero in R doesn’t exist for half-integer N , making the pole simple also in this

case. The behavior of the integrand of I− at p = ±iN and ±i(N − 1) are as the following.

1. p = iN is a triple(double) pole for integer(half-integer) N .

2. p = −iN is always a single pole.

3. p = i(N − 1) is a double(single) pole for integer(half-integer) N .

4. p = −i(N − 1) is a double(single) pole for integer(half-integer) N .

I+ can be written easily as we don’t have to deal with any double poles.

I+ =

∞∑

n=[N ]+1

Ane
(−N+n)T̄Gij

H i′j′(l,N + n) (3.72)

I− has some double poles we have to think about. The simple pole contribution can

be written as,

I−,1 =

[N ]∑

n=1

Ane
(−N+n)T̄Gij

H i′j′(l,N + n)

+
0∑

n=−∞
Bne

(−N+n)T̄Gij
H i′j′(l,N − n)

+
∑

ian: poles of R; an<N

Cne
(−N+an)T̄Gij

H i′j′(l,N − an)

+δN,[N ]+1/2(BNG
ij
H i′j′(l, 0) +B(N−1)e

−T̄Gij
H i′j′(l, 1)

+B−(N−1)e
−(2N−1)T̄Gij

H i′j′(l, 2N − 1) +B−Ne
−2NT̄Gij

H i′j′(l, 2N)) (3.73)
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For odd dimensions, we always get the double pole at p = iN ;

I−,2,odd =JN T̄G
ij
H i′j′(l, 0) +KN

∂

∂∆
Gij

H i′j′(l,∆)|∆=0 (3.74)

Note that,
∂

∂∆
Gij

H i′j′(l,∆)|∆=∆0 ∼ le−∆0ltij i′j′ for large l (3.75)

For even dimensions, we get double poles at p = ±i(N−1) and a triple pole at p = iN .

The double poles give rise to the terms,

I−,2,even = DN−1T̄ e
−T̄Gij

H i′j′(l, 2N − 1) +BH
N−1e

−T̄H ij
0 i′j′(l, 1)

+J−(N−1)T̄ e
−(2N−1)T̄Gij

H i′j′(l, 2N − 1)

+K−(N−1)e
−(2N−1)T̄ ∂

∂∆
Gij

H i′j′(l,∆)|∆=2N−1 (3.76)

and the triple pole gives rise to the term,

I−,3,even = DN T̄G
ij
H i′j′(l, 2N) + FN T̄

2Gij
H i′j′(l, 2N)

+BH
NH

ij
0 i′j′(l, 0) + JH

N T̄H
ij
0 i′j′(l, 0) +KH

NH
ij
1 i′j′(l, 0) (3.77)

Note that in the even dimensional case we have neglected the pieces already put into I−,1.

The definition for the functions H0 and H1 are given in appendix E, by equations (E.9)

and (E.10).

We see that in both the odd and even dimensional case, the asymptotic behavior of

the propagator is logarithmic, that is that it behaves as ∼ ltiji′j′ .

4 Gauge choice

In the previous section, we have obtained the expression for the transverse traceless gravi-

ton propagator. As previously mentioned at the beginning of section 3, the transverse

traceless perturbation of the graviton is ‘almost’ gauge invariant, that is, the transeverse

tracelessness fixes the gauge degrees of freedom except with respect to a few modes.

In section 4.1 we will elaborate on what we mean by saying that there exists residual

gauge freedom. In this section we will also present a ‘naive’ way of getting rid of those gauge

degrees of freedom. We will present the propagator that is gauge-fixed in this manner in 4.2.

Finally, in section 4.3 we will discuss the subtlety overlooked in the gauge-fixing method

presented in the first subsection and present what we believe is to be the correct gauge-

fixed propagator.

4.1 Gauge choice and contour integration

An important issue we must address is the residual gauge degrees of freedom we haven’t

gotten rid of in calculating the graviton correlator. In other words, we have to get rid of

“degenerate modes” of the transverse-traceless graviton.
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In order to clarify what ‘degenerate’ means, we first decompose the graviton in our

background. We know that the (perturbation of the) graviton on a HD−1 slice of the

bubble can be (almost) uniquely decomposed as,

δgij =
1

D − 1
hγ̃ij + 2

(
∇̃i∇̃j −

γ̃ij

D − 1
�̃

)
E + 2F(i|j) + hij (4.1)

Where γ̃ij is the unit HD−1 metric (see for example, [13]). We have used |j as a shorthand

for ∇̃j . Here h,E are scalars, Fi is a transverse vector, and as we know, hij is a transverse

traceless symmetric tensor. We have stated that we are only interested in the two point

function of the hij perturbation.

Hence the path integral we carry out concerns modes of the transverse traceless per-

turbation on HD−1. Note that,

Ψh
p′(T + iπ/2)r(pu)ij(H) (4.2)

would serve as an orthonormal basis of such modes, where r(pu)ij are transeverse traceless

eigenmodes of

�̃r(pu)ij = −(N2 + 2 + p2)r
(pu)
i′j′ (4.3)

which are normalized so that
∫
dD−1x

√
γ̃r(pu)ijr

(p′u′)†
ij = δ(p − p′)δuu′

(4.4)

in HD−1. Note that �̃ is the Laplacian with respect to γ̃ij, γ̃ = detγ̃ij , and as before, u

denotes quantum numbers other than p. Ψh
p′(X) are defined in (3.40).

The problem is that there are modes that introduce an ambiguity to the decompo-

sition (4.1). Suppose there is a transverse mode F (pu)i such that, F (pu)(i|j) is transverse,

traceless and satisfies,

�̃F (pu)(i|j) = −(N2 + 2 + p′2)F (pu)(i|j) (4.5)

Then for this perturbation of the graviton in the angular direction, it is ambiguous whether

to put

2F i = f(T )F (pu)i (4.6)

or to put,

hij = f(T )F (pu)(i|j) (4.7)

where f(T ) an arbirary function only of T . The same is true if we had a scalar mode Epu

such that, E;ij − γ̃ij

D−1E
;i
;i is transverse traceless and satisfies,

�̃

(
E;ij −

γ̃ij

D − 1
E;i

;i

)
= −

(
N2 + 2 + p′′2

)(
E;ij −

γ̃ij

D − 1
E;i

;i

)
(4.8)

For this perturbation in the angular direction, it is ambiguous whether to put,

2E = f(T )E(pu) (4.9)
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or to put,

hij = f(T )

(
E;ij −

γ̃ij

D − 1
E;i

;i

)
(4.10)

This signals a ‘degeneracy’ in the vector/scalar and tensor modes of the graviton. By

‘degenerate modes’ we are refering to these modes that may be written in terms of other

components in the decomposition (4.1).

The statement we have made in section 3 that we will only consider transverse traceless

perturbations is actually a gauge condition; that E = 0 and F i = 0. Hence such modes of

hij represent a residual gauge freedom we haven’t fixed yet, as these may well be written as

perturbations of the scalar/vector modes. Therefore, in order to completely fix the gauge,

we should find them and project them out.

We will check in the appendix F that the “supercurvature modes” p = iN and p =

i(N −1) are degenerate with vector modes and the scalar mode respectively. Let’s see how

to project these out from the propagator.

We first start from (3.60). We can write this in a more convenient manner similar

to (3.55), which is,

Gij T̄
i′j′(T, T

′, l) =

∫

C
dp

(
i

2p

)
eip(2X0−iπ−T̄ )

1 − e2π(p−iN)
R(p)W ij

(p)i′j′(il) (4.11)

In order to see how the individual tensor modes on HD−1 contribute to this propagator,

we have to go through some steps.

We first define the maximally symmetric bitensor,

Zij
(p)i′j′(l) =

∑

u

r(pu)ij(H)†r(pu)
i′j′ (H′) (4.12)

From the general prescription of obtaining maximally symmetric bitensors which come

from the sum of well defined modes in Sd and Hd (which is kindly laid out for the case

d = 3 in [16]) we know that the relation,

Zij
(p)i′j′(l) =

Q′
p

Qp
W ij

(p)i′j′(il) (4.13)

holds. This is more explicitly addressed in [15], where a multiple of Q′
p is denoted as a

‘spectral function’. From equation (2.107) in this paper, we see that

Q′
p =

D[p2 + (N + 1)2]

2D−1πN+1/2Γ(N + 1/2)

Γ(ip +N − 1)Γ(−ip +N − 1)

Γ(ip)Γ(−ip) (4.14)

The problems is that Q′
p/Qp turns out to have simple poles for p = i(N − 1), iN and

p = i(N + 2), i(N + 3), . . .. (We will only be concerned with the first two poles, as they

are the ones relevant to the contour integral.) We must address how to think about the

pole of Zij
(p)i′j′(l).

The poles of Zij
(p)i′j′ come from the normalization constant of the individual modes that

diverge for the given values of p (see [15]). Since W ij
(p)i′j′(il) is obtained by multiplying an
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analytic function of p to get rid of the poles in the upperhalf plane, it can be written as,

W ij
(p)i′j′(il) =

∑

u:non-zero r’

r′(pu)ij†(H)r
′(pu)
i′j′ (H′) (4.15)

where r′(pu)ij aren’t normalized properly. This means that for certain values of p and

u, r′(pu)ij may be zero. This is because symmetric transverse traceless tensor modes on

HD−1 have different normalization constants for different quantum numbers. For example,

the parity even spin 2 tensor modes of have an extra factor of 1/
√
p2 + (N − 1)2 in their

normalization constant compared to the parity odd spin 2 tensor modes onHD−1.3 We have

modified the sum over u to make this point clear. To state this more clearly, {r′(pu)ij} ⊂
{r(pu)ij} and in some cases, {r′(pu)ij} 6= {r(pu)ij}. We also note that,

∂pW
ij
(p)i′j′(l) =

∑

u:non-zero r′

(∂pr
′(pu)ij†(H)r

′(pu)
i′j′ (H′) + r′(pu)ij†(H)∂pr

′(pu)
i′j′ (H′)) (4.16)

We stress again that W ij
(p)i′j′(l) is well defined(regular) in the upper half plane.

Now we can write (4.11) as,

Gij T̄
i′j′(T, T

′, l) =

∫ ∞

−∞
dp

(
i

2p

)
eip(2X0−iπ−T̄ )

1 − e2π(p−iN)
R(p)W ij

(p)i′j′(il)

−2πi
∑

pR={an}
{(N−[N−1/2]),...,N}

Resp=ipR

(
i

2p

)
eip(2X0−iπ−T̄ )

1 − e2π(p−iN)
R(p)W ij

(p)i′j′(il) (4.17)

where ian are the positive poles of the reflection coefficient. This can be schematically

written as,

Gij T̄
i′j′(T, T

′, l) =
∑

p:real

Φp(T̄ )Zij
(p)i′j′(l)

+
∑

p=ian,i(N−[N−1/2]),...i(N−2)

Φp(T̄ )Zij
(p)i′j′(l)

+Φi(N−1)(T̄ )W ij
(i(N−1))i′j′(l)

+ΦiN (T̄ )W ij
(iN)i′j′(l) + Φ′

iN (T̄ )∂pW
ij
(p)i′j′(l)|p=iN (4.18)

The Φp(T̄ ) denotes the T̄ dependence of each component. Note that for certain values ofX0,

in and ian can coincide to give multiple poles, but this is irrelevant to the point we wish to

make now, so we will ignore such subtleties. Note that the last line two lines come from the

poles at p = i(N − 1), iN . From (4.12), (4.15) and (4.16) we see that the expression (4.18)

shows explicitly the contribution of each hyperbolic mode to the propagator.

In appendix F, it is shown that indeed the mode sum (4.15) for p = i(N − 1), iN can

be written as a sum of modes coming from scalar and vector modes. Although the scalar

and vector modes might not saturate {r(pu)ij} (as we see in the appendix, the scalar mode

derivatives only give rise to the even tensor modes), it certainly saturates {r′(pu)ij} as some

3See section 2 of [15] for more details.
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C’=C + C  + CN N−1

N−1

N

N+1

C

C

CN−1

N

Figure 6. The contour C′.

of the r(pu)ij obtain zero coefficients for the given p. (This degeneracy is explicitly verified

for the 4 dimensional case in [18].)

The naive way to project out the degenerate modes would be to not sum over the

modes of the graviton whose ‘angular’ modes on HD−1 are r′(pu)ij (p = i(N − 1), iN) in

the path integral in the first place. This can be done by taking the r′(pu)ij components

with p = i(N − 1), iN in the sum (4.18) to be zero. This just gives us,

Gij T̄
i′j′(T, T

′, l) =
∑

p:real

Φp(T̄ )Zij
(p)i′j′(l)

+
∑

p=ian,i(N−[N−1/2]),...i(N−2)

Φp(T̄ )Zij
(p)i′j′(l) (4.19)

which can be obtained by deforming the initial contour of integration in (4.20) to be

C ′ which is C with two circular contours in the counter-clockwise direction centered at

p = i(N − 1) and iN added. (We will call these two circles CN and CN−1 respectively.)

This is depicted in figure 6. Note that if there are no poles between i(N − 1) and iN

coming from the reflection coefficient, C ′ can be taken to be a contour that runs along the

real axis of the p plane, with a ‘jump’ that just passes under p = i(N − 1).

Hence the propagator with the redundant modes naively projected out is,

Gij T̄
P i′j′(T, T

′, l) = C0

∫

C′

dpRe−ipT̄Y ij
(p)i′j′(il)

×(p2 + (N + 1)2)Γ(ip +N − 1)Γ(−ip +N − 1) (4.20)
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4.2 The large l limit (again)

Notice that projecting out the given modes do not change the arguments given in section 3.6

that much. Notice that equation (6.39) just gets modified by redefining the contour of

integration. That is, I+ becomes I ′+ where we have the same integrand as I+ with the

different contour, C ′
+ ≡ C++CN+CN−1. Also, I− becomes I ′− which is the integral with the

same integrand as I− but with the different contour of integration, C ′
− ≡ C−−CN −CN−1.

Since only the poles, p = iN and p = i(N − 1) cross over from I− to I+, we can figure

out I ′− and I ′+ easily. First of all,

I ′+,1 + I ′−,1 =

∞∑

n=1

A′
ne

(−N+n)T̄Gij
H i′j′(l,N + n)

+

0∑

n=−∞
B′

ne
(−N+n)T̄Gij

H i′j′(l,N − n)

+
∑

ian: poles of R; an<N

Cne
(−N+an)T̄Gij

H i′j′(l,N − an)

+δN,[N ]+1/2(A
′
NG

ij
H i′j′(l, 2N) +A′

N−1e
−T̄Gij

H i′j′(l, 2N − 1)

+B′
−(N−1)e

−(2N−1)T̄Gij
H i′j′(l, 2N − 1) +B′

−Ne
−2NT̄Gij

H i′j′(l, 2N)) (4.21)

We note that A′
n = An and B′

n = Bn for n 6= N,±(N − 1).

For odd dimensions, we get the double pole at p = iN in I ′+;

I ′+,2,odd =D′
N T̄G

ij
H i′j′(l, 2N) + E′

N

∂

∂∆
Gij

H i′j′(l,∆)|∆=2N (4.22)

For even dimensions, we get double poles at p = ±i(N−1) and a triple pole at p = iN .

The double poles give rise to the terms,

I+,2,even = D′
N−1T̄ e

−T̄Gij
H i′j′(l, 2N − 1) + E′

N−1e
−T̄ ∂

∂∆
Gij

H i′j′(l,∆)|∆=2N−1 (4.23)

I−,2,even = J ′
−(N−1)T̄ e

−(2N−1)T̄Gij
H i′j′(l, 2N − 1)

+K ′
−(N−1)e

−(2N−1)T̄ ∂

∂∆
Gij

H i′j′(l,∆)|∆=2N−1 (4.24)

and the triple pole gives rise to the term,

I−,3,even = D′
N T̄G

ij
H i′j′(l, 2N) + F ′

N T̄
2Gij

H i′j′(l, 2N)

+

(
E′

N

∂

∂∆
Gij

H i′j′(l,∆) +G′
N T̄

∂

∂∆
Gij

H i′j′(l,∆)

+ H ′
N

∂2

∂∆2
Gij

H i′j′(l,∆)

)
|∆=2N (4.25)

Note that both in the even and odd dimensional case, we have tamed the logarithmic

scaling behavior. Now the asymptotic behavior goes in general like, ∼ e−(N−an)l where ian

is the pole of R with maximum ℜan, or if there aren’t any poles of R in the upper half

plane, it would be like ∼ e−Nl.
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4.3 Treatment of double poles

It seems that we have obtained a well tamed propagator in the previous section, but there

is a subtlety we have overlooked. This comes from the fact that we have ignored the

contribution of the double pole in (4.18). We have done this by assuming that we can

ignore the contribution of gauge dependent modes in the propagator, since these modes

can show up by a coordinate transformation.

But it is not clear that this is the thing to do when our propagator is not ‘diagonal.’

The problem is that the statement that ‘we ignore the gauge dependent modes’ just restricts

the form of “hij”, so schematically, if we denote the modes that should be projected out

to be, |p〉, the gauge condition is just,

〈p|h〉 = 0 (4.26)

for the states |h〉.
Now if our unprojected propagator is diagonal, i.e. of the form,

G =
∑

m

Mm|m〉〈m| (4.27)

to begin with, the gauge condition can be translated into,

G =
∑

m6=p

Mm|m〉〈m| (4.28)

since

G|h〉 =
∑

m

Mm|m〉〈m|h〉 =
∑

m6=p

Mm|m〉〈m|h〉 (4.29)

for |h〉 satisfying the gauge condition (4.26) anyways.

But if the propagator, as in our case, had the form,

G =
∑

m6=p

Mm|m〉〈m| +M0|0〉〈0| +M1(|0′〉〈0| + |0〉〈0′|) (4.30)

where |0〉 is a mode we projected out, still,

G
∑

m6=p

am|m〉 =
∑

m6=p

Mmam|m〉 +
∑

m6=p

M1am〈0′|m〉|0〉 (4.31)

so we would have to keep the latter term with M1, since it has a physical effect on the

gauge fixed states.

Suppose the propagator G of the form (4.30) could be written in the particular form,

G =
∑

m6=p

Mm|m〉〈m| +M0|0〉〈0| +M1 lim
ǫ→0

(
1

ǫ
|0〉〈0| − 1

ǫ
|ǫ〉〈ǫ|

)
(4.32)

where,

lim
ǫ→0

|ǫ〉 = |0〉 (4.33)
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In this case,

|0′〉 = − lim
ǫ→0

|ǫ〉 − |0〉
ǫ

(4.34)

Actually, this is exactly what happens to our propagator as we deform the reflection coef-

ficient of the thin wall. Even if we project out |0〉, we would still have to keep |ǫ〉, but the

last term in (4.32) is not well defined, so we regulate it by subtracting 1
ǫ |0〉〈0| and obtain

the M1 term of (4.30).

So the reason that this piece shows a physical effect becomes clearer in our case.

Although the bubble wall bound state mode becomes degenerate with a gauge mode, we

cannot treat it as if it did not exist in the first place.

Retaining the double pole contribution, we should write the propagator as,

Gij T̄
P i′j′(T, T

′, l) = C0

∫

C′

dpRe−ipT̄Y ij
(p)i′j′(il)(p

2 + (N+1)2)Γ(ip+N−1)Γ(−ip+N−1)

+KN∂pW
ij
(p)i′j′(l)|p=iN (4.35)

It is easily verifiable that for large l (and small z in poincare coordinates)

∂pW
ij
(p)i′j′(l)|p=iN ∼ ltiji′j′ ∼ ln(|x− x′|/z)tij i′j′ (4.36)

The boundary curvature two point function arising from this piece is non-zero. We

will do this calculation in section 5.2.

5 Summary

We have seen in the previous section that we can organize the propagators in the large l

limit as a sum of well defined transverse traceless propagators in HD−1 coming from single

poles in the momentum integral, their normalizable derivatives, and a non-normalizable

logarithmic piece coming from the double pole. Put in this form, hopefully, it should be

easier to think about what a holographic theory on the SD−1 boundary of the “bubble”, if

exists, would look like.

In this section, we will takes steps to further carry out this effort. We will first sum-

marize the graviton two point function; we will sort out the terms in a well organized

way. We will also point out some important features that may have implications about the

boundary theory.

5.1 Summary of results

Let’s once and for all write down the terms that show up in our ‘holographic expansion’

of the gauge invariant transverse traceless graviton two point function in a D dimensional

CDL instanton background. The full two point function can be written as,

Gij
i′j′(T, T

′, l) = Gij δT
i′j′ (T, T

′, l) +Gij T̄
P i′j′(T, T

′, l) (5.1)

where Gij δT
i′j′ (T, T

′, l) is the graviton two point function in flat FRW space with no bubble

nucleation. We are only intrested in the piece, Gij T̄
P i′j′(T, T

′, l) that arises due to the

existence of the CDL instanton.
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This can be written as,

Gij T̄
P i′j′(T, T

′, l) = Gsingle +Gdouble (5.2)

Gsingle has the same form for both odd and even dimensions. The form for Gdouble

differs according to the parity of the dimension.

Gsingle can be written as the following.

Gsingle =

∞∑

n=0
n 6=N,N−1

Ane
−(N+n)T̄Gij

H i′j′(l,N + n)

+

∞∑

n=0
n 6=N,N−1

Bne
−2NT̄ e(N+n)T̄Gij

H i′j′(l,N + n)

+
∑

an 6=N

Cne
−(N−an)T̄Gij

H i′j′(l,N − an)

+DN∂pW
ij
(p)i′j′(l)|p=iN (5.3)

where ian are the poles of R(p) given by (3.38). We once more recall that we have defined

N ≡ (D − 2)/2.

Gij
H i′j′(l,∆) are propagators on HD−1 defined by (3.63). For ∆ > N , these are

proportional to massive spin 2 propagators with m2 = ∆(∆ − 2N).

If we write the coordinates of the points in the hyperbolic slices using Poincaré coordi-

nates, (so the coordinates of the two point would be (T, ~x, z) and (T ′, ~x′, z′)) the propagators

showing up in the above sum behave as the following as z, z′ → 0;

(zN+nz′N+n)

[
e−(N+n)T e−(N+n)T ′

(r2)(N+n)
tij i′j′

]

(zN+nz′N+n)e−2NT e−2NT ′

[
e(N+n)T e(N+n)T ′

(r2)(N+n)
tiji′j′

]

(zN−anz′N−an)

[
e−(N−an)T e−(N−an)T ′

(r2)(N−an)
tiji′j′

]

[
ln(r/z)tij i′j′

]
(5.4)

where we have defined, r ≡ |~x− ~x′|.
In even dimensions, Gdouble can be written as the following.

Gdouble = EN−1e
−(2N−1)T̄ [Gij

H i′j′(l, 2N−1)(a′0 + a′1T̄ ) + b′0∂∆G
ij
H i′j′(l, 2N−1)]

+ENe
−2NT̄Gij

H i′j′(l, 2N)

+FN−1e
−2NT̄ e(2N−1)T̄ [Gij

H i′j′(l, 2N−1)(a0 + a1T̄ ) + b0∂∆G
ij
H i′j′(l, 2N−1)]

+FNe
−2NT̄ e2NT̄

[
Gij

H i′j′(l, 2N)(c0 + c1T̄ + c2T̄
2)

+∂∆G
ij
H i′j′(l, 2N)(d0 + d1T̄ ) + e0∂

2
∆G

ij
H i′j′(l, 2N)

]
(5.5)
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Where we have defined,

∂n
∆G

ij
H i′j′(l,∆

′) ≡ ∂n
∆G

ij
H i′j′(l,∆)|∆=∆′ (5.6)

Taking each term to the boundary we get,

(z(2N−1)z′(2N−1))

[
e−(2N−1)T e−(2N−1)T ′

(r2)2N−1
tij i′j′

]

e−2NT e−2NT ′O
(
z2N+2z′2N+2

(r2)2N+2

)

(z(2N−1)z′(2N−1))e−2NT e−2NT ′

[
e(2N−1)T e(2N−1)T ′

(r2)2N−1
tij i′j′

]

(z2Nz′2N )e−2NT e−2NT ′

[
e2NT e2NT ′

(r2)2N
tij i′j′

] [(
a0 + a1T̄

)
+ b0 ln

(r
z

)]
(5.7)

In odd dimensions, Gdouble can be written as the following.

Gdouble = EN−1e
−(2N−1)T̄Gij

H i′j′(l, 2N − 1)

+ENe
−2NT̄Gij

H i′j′(l, 2N)

+FN−1e
−2NT̄ e(2N−1)T̄Gij

H i′j′(l, 2N − 1)

+FNe
−2NT̄ e2NT̄ [Gij

H i′j′(l, 2N)(f0 + f1T̄ ) + g0∂∆G
ij
H i′j′(l,∆)|∆=2N ] (5.8)

Taking each term to the boundary, we obtain,

e−(2N−1)T e−(2N−1)T ′ O
(
z2N+1z′2N+1

(r2)2N+1

)

e−2NT e−2NT ′ O
(
z2N+2z′2N+2

(r2)2N+2

)

(e−2NT e−2NT ′

)e(2N−1)T e(2N−1)T ′ O
(
z2N+1z′2N+1

(r2)2N+1

)

(z2Nz′2N )e−2NT e−2NT ′

[
e2NT e2NT ′

(r2)2N
tij i′j′

]
(5.9)

5.2 The logarithmic piece

We first focus on the piece,

∂pW
ij
(p)i′j′(l)|p=iN ∼ ltiji′j′ (5.10)

The natural thing to do with this is to calculate the ‘curvature two point function’

coming from this piece. To explain a bit more, if we assume that this piece corresponds to

a two point function < hijhij > of some transverse traceless operator on the boundary, we

would like to see what the gauge invariant two point function, ∇i∇j∇i′∇j′ < hijhi′j′ > is.
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Let’s first try to find the relevant components of this by explicitly writing this in

Poincaré coordinates on the hyperboloid. We do so because it is convenient to see the be-

havior at the boundary in these coordinates. To write it once more, the Poincaré coordinate

on the hyperboloid is,

ds2 =
1

z2
(dz2 + dx2

1 + · · · + dx2
D−2) (5.11)

The boundary is at z = 0. Let’s consider two points (x1, . . . , xD−2, z),

(−x1, . . . ,−xD−2, z) and look at the z → 0 limit. In the Poincaré coordinates, the geodesic

that connects two points on the boundary is a half circle. So considering the given two

points, the unit tangent vector ni and n′i at (x1, . . . , xD−2, z) and (−x1, . . . ,−xD−2, z)

respectively is,
(
nz

nxi

)
=

(
−r′/zr
xi/rr

′

)
,

(
nz′

nx′

i

)
=

(
−r′/zr
−xi/rr

′

)
(5.12)

where we define,

r′ =
√
x2

1 + x2
2 + · · · x2

D−2, r =
√
z2 + s′2 (5.13)

for convenience.

The parallel transport operator in our case is just a rotation matrix, which is,

(
g z′
z g

x′

j
z

g z′
xi

g
x′

j
xi

)
=

1

r2




−r2 + 2z2 −2zx1 · · · −2zxD−2

2zx1 r2 − 2x2
1 − · · · −2x1xD−2

...
...

. . .
...

2zxD−2 −2xD−2x1 · · · r2 − 2x2
D−2




(5.14)

Also, the geodesic distance between the two points may be calculated as,

l = 2 ln
r + r′

z
(5.15)

Calculating tij i′j′ from this, we find that if the correlator has at least one z index, it

is of order O(z). Hence, in the limit z → 0, we find that the only surviving components of

tij i′j′ are those with all the indicies are in the D − 2 plane on the boundary, that is,

tiji′j′ ∼ O(z) for z → 0 unless i, j, i′, j′ 6= z (5.16)

Hence when we take the correlator to the boundary, the only surviving tensors compo-

nents (5.10) are those whose indices are all along the boundary directions. Also, in this

limit, l = 2 ln(2r′/z)
We can actually write the form of tiji′j′ on the boundary plane from direct calculation

which yields,

tij i′j′((x1, . . . , xD−2), (−x1, . . . ,−xD−2))

= δijδi′j′ −N
(
δii′ −

2xixi′

r′2

)(
δjj′ −

2xjxj′

r′2

)

−N
(
δij′ −

2xixj′

r′2

)(
δji′ −

2xjxi′

r′2

)
+O(z) (5.17)
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when i, j, i′, j′ are all along the direction of the boundary. Using translational invariance

in the boundary space we obtain,

tiji′j′((x1, . . . , xD−2), (y1, . . . , yD−2))

= δijδi′j′ − N

(
δii′ −

2(xi − yi)(xi′ − yi′)

R′2

)(
δjj′ −

2(xj − yj)(xj′ − yj′)

R′2

)

− N

(
δij′ −

2(xi − yi)(xj′ − yj′)

R′2

)(
δji′ −

2(xj − yj)(xi′ − yi′)

R′2

)
(5.18)

by replacing 2xi by xi − yi.

Note that we have newly defined,

R′2 = (x1 − y1)
2 + · · · + (xD−2 − yD−2)

2 (5.19)

which satisfies l = 2 ln(R′/z).

Let’s attempt to calculate a gauge invariant quantity, the D − 2 dimensional scalar

curvature of the graviton fluctuation. Since a traceless perturbation hij of the curvature

in a flat background yields,

C ∝ ∂i∂jh
ij (5.20)

we get,

< C(x)C(y) >= ∂i∂j∂
i′∂j′c0lt

ij
i′j′ =

c1
R′4 +

c2 ln(R′/z)
R′4 (5.21)

where,

c1 = −16(2N − 1)(3N − 2)(4N2 − 7N + 1)c0 (5.22)

c2 = −64N(N − 1)(N − 2)(2N − 1)2c0 (5.23)

It’s worth noting that the ln(R′/z)/R′4 term vanishes only for D = 3, 4, 6, and that

for D = 3, the curvature vanishes altogether. (We’ve ignored the D = 2 case since this

calculation doesn’t make sense if coordinates are not defined at all in the first place.)

5.3 Existence of a stress-energy tensor

We notice from the expression given in section 5.1 (namely equations (5.5) and (5.8)) that

we have a dimension 2N = (D−2) transverse traceless tensor propagator in piece in HD−1.

That is, we have the pieces which in Poincaré coordinates, ignoring the T dependence,

behaves like

Gij
H i′j′(l, 2N) ∼ z2Nz′2N (x− x′)−4N tij i′j′ (5.24)

as z, z′ → 0.

Writing this for two points at equal z we get,

Gij
H i′j′(l, 2N) ∼ z4N

R′4N
tiji′j′ (5.25)
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By direct calculation, it is verified that this piece is transverse-traceless on the (D − 2)

dimensional boundary, namely that,

1

R′4N
tiii′j′ = 0 (5.26)

∂i

(
1

R′4N
tij i′j′

)
= 0 (5.27)

Actually we see that this conincides with the expression for the two point function of

the stress energy tensor of a CFT (namely equation (2.18)) given in [19].

We do not want to hastily imply that the piece that shows up in our expansion is a stress

engergy tensor on the boundary, but if we assume some kind of holographic correspondence

there seems to exist a dimension (D−2) transverse traceless tensor on a (D−2) dimensional

boundary theory.

Note that from looking at equation (5.7) there seems to be some kind of obstruction

of this term that comes from the pole p = iN . We will try to address this issue in the

final section.

5.4 Odd and even dimensions

Since we know that gravity behaves very differently in even and odd dimensions, we would

expect the behavior of the propagator to be drastically different for the two cases, which

indeed it is. The most dramatic difference would be that the number of poles of the

reflection coefficient for even dimensions is finite (as the reflection coefficient becomes a

rational function with respect to p) whereas in odd dimensions it is infinite. Hence if we

want to think about some holographic correspondence, an infinite number of operators with

different dimensions seems to come at play for odd dimensions whereas for even dimensions

number seems finite.

Also in odd dimensions some values of X0 seem to give rise to an infinite number of

complex poles for R. This happens at a sharp point, namely at X0 = 0. If there is indeed

some kind of holographic dual theory that lives at the boundary SD−2 that is dual to the

CDL gravity theory, this suggests that there might be some phase transition or duality in

that theory for odd dimensions, whereas for even dimensions, where all the poles stay on

the imaginary axis for all values of X0, nothing of the sort seems to happen.

6 The scalar propagator

We will follow the exact steps taken as we have with the graviton propagator in obtaining

the propagator for an arbitrary minimally coupled scalar ψ in the given background.

6.1 The equation of motion

We first consider when ψ is massless. We first define

χ = aN (X)ψ (6.1)
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Reusing the notations we have used for the graviton, the relevant part of the action turns

out to be,

S =
1

2

∫
dXdΩD−1

√
g̃χ
[
−∂2

X + U(X) − �̃

]
χ (6.2)

Hence by defining,

Ĝ(X1,X2,Ω1,Ω2) = aN (X1)a
N (X2) < χ(X1,Ω1)χ(X2,Ω2) > (6.3)

we get,

[
−∂2

X1
+ U(X1) − �̃1

]
Ĝ(X1,X2,Ω1,Ω2) =

1√
g̃
δ(X1 −X2)δ(Ω1,Ω2) (6.4)

6.2 Decomposition

Due to the O(D − 1) symmetry, the Green’s function G can only be a function of X,X ′

and the geodesic distance µ(Ω1,Ω2) between the two points on the (D− 1) sphere. Hence,

we may write the solution for the equation (6.4) simply as,

Ĝ(X,X ′, µ) =

+i∞∑

p=iN

Gs
p(X,X

′)W(p)(µ) (6.5)

for Gs
p(X,X

′) and W(p)(µ) which we will define below.

We define Gs
p to satisfy equation (3.19). The reason we didn’t just put Gs

p equal to Gp

defined in (3.39) is because Gp obtained as (3.41) for p = iN is singular due to the pole

of R at p = iN . Gp has a simple pole at p = iN and the residue R(X,X ′) of this pole

satisfies the equation,

[−∂2
X + U(X)]R(X,X ′) = 0 (6.6)

This is because R(X,X ′) is normal at X = X ′. (For example, when X,X ′ < X0 it is an

exponential of X +X ′ so it behaves normally.) Hence we may define

Gs
iN (X,X ′) ≡ lim

p→iN

(
Gp(X,X

′) − Resp=iNGp(X,X
′)

p− iN

)
(6.7)

and Gs
iN will still satisfy equation (3.19) for p = iN . For p 6= iN , we may set Gs

p safely

equal to Gp. Hence for X,X ′ < X0 we get,

Gs
p(X,X

′) ≡ i

2p
(eipδX + R(p)e−ipX̄) (6.8)

Gs
iN (X,X ′) ≡ i

2p

(
eipδX +

(
R(p) − Resp=iNR(p)

p− iN

)
e−ipX̄

)
(6.9)

W(p)(µ) is a scalar function only dependent upon µ(Ω1,Ω2). W(p)(µ) is defined by,

W(p)(µ) =
∑

u

q(pu)(Ω)q(pu)(Ω′)∗ (6.10)
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where q(pu) are transeverse traceless eigenmodes of

�̃q(pu) = (N2 + p2)q(pu) (6.11)

which are normalized so that
∫
dD−1x

√
g̃q(pu)q(p

′u′)∗ = δpp′δuu′

(6.12)

Note that we denoted all the quantum numbers other than p needed to specify the mode

q as u. W(p)(µ) satisfies,

�̃W(p)(µ) = (N2 + p2)W(p)(µ) (6.13)

On SD−1, we get eigenmodes for the p values, p = iN, i(N+1), . . . , so by completeness

of the basis,

+i∞∑

p=iN

W(p)(µ(Ω,Ω′)) = δ(Ω,Ω′)/
√
g̃ (6.14)

From equations (6.13), (6.14), and (3.19), we see that indeed (6.5) solves (6.4).

6.3 W(p)(µ)

The equation for W(p)(µ) can be written out as in [14], which is,

W ′′
(p)(µ) + (D − 2) cot µG′(µ) − (N2 + p2)G(µ) = 0 (6.15)

This can be solved to be,

W(p)(µ) = KpF

(
N + ip,N − ip;N +

1

2
; 1 − z

)
for z = cos2 µ

2
(6.16)

where from (6.10) we see that Wp to be non-singular at µ = 0. Kp can be calculated

from (6.16) and (6.10)

Kp
2πD/2

Γ(D/2)
=

∫
dD−1Ω

√
γ̃W(p)(Ω,Ω)

= −2ip(p2 + (N − 1)2)Γ(−ip +N − 1)

(D − 2)!Γ(−ip −N + 2)
(6.17)

by the degeneracy of the p mode [15]. Hence we obtain,

W(p)(µ) =

[
− iΓ(D/2)

πD/2

]
p(p2 + (N − 1)2)Γ(−ip +N − 1)

(D − 2)!Γ(−ip −N + 2)

×F
(
N + ip,N − ip;N +

1

2
; 1 − z

)
(6.18)
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6.4 Massive scalar propagators in H(D−1)

The equation for the propagator for a massive scalar in HD−1 with curvature radius

R2 = −1 is, (
−�̃1 −m2

)
GH(l(Ω1,Ω2),m

2) =
1√
γ̃
δ(Ω1,Ω2) (6.19)

This is solved in [14] to be,

GM (l,m2) =

[
Γ(N − ip)Γ(1/2 − ip)

Γ(1 − 2ip)π(D−1)/22(D−1)

](
1

z

)N−ip

F

(
N − ip, 1/2 − ip; 1 − 2ip;

1

z

)

(6.20)

where p = i
√
N2 +m2. For z → ∞

GM (l,m2) ∼
(

1

z

)N−ip

(6.21)

As in the case for the graviton, we define,

GH(l,∆) =

(
1

z

)∆

F

(
∆,−N +

1

2
+ ∆;−2N + 1 + 2∆;

1

z

)
(6.22)

We note that,

GH(l,∆) ∼ e−∆l (6.23)

for non-problematic ∆ and that

GH(l,∆) ∝ GM (l,∆(∆ − 2N)) (6.24)

for ∆ > N .

As in the graviton case, GH(l,∆) is singular when ∆ = N − n for positive integer n.

Following the exact same steps taken in appendix E we see that,

GH(l,N − ip) =
Ks,n

p+ in
GH(l,N +n) +H0(l,N − n) +H1(l,N − n) +O((p+ in)2) (6.25)

where H0 and H1 at large l behave as,

H0(l,N − n) ∼ e−(N−n)l (6.26)

H1(l,N − n) ∼ le−(N−n)l (6.27)

6.5 Analytic continuation

The sum (6.5) may be expressed as,

Ĝ(X,X ′, µ) =

∫

Cs1

dp

2πi

Γ(−ip−N + 1)Γ(ip +N)

(−1)−ip−N

×Gs
p(X,X

′)W(p)(µ) (6.28)

where the contour Cs1 is defined to be one that comes down from i∞ on the left side of

the imaginary axis of the complex p plane, and pivots around p = iN to go back to i∞ by

the right side of the imaginary axis.

– 32 –



J
H
E
P
0
6
(
2
0
0
9
)
0
2
3

Plugging in (3.41) in to this equation we obtain,

Ĝ(X,X ′, µ) =

∫

Cs1

dp

4πp

Γ(−ip −N + 1)Γ(ip +N)

(−1)−ip−N

×(eipδX + R(p)e−ipX̄)W(p)(µ)

+AeNX̄ +BeNX̄X̄ + CeNX̄ ∂

∂p
Wp(µ)|p=iN (6.29)

where the additional term comes from the double pole arising from the additional term in

GiN given in (6.9). Note that WiN (µ) is constant.

We focus our attention on the integral of latter term(+the residual terms), where the

first term just gives the scalar propagator in flat space. By essentially the same arguments

given in the spin 2 case, the contour of integration for the latter terms can be safely

deformed to the contour Cs, which we define to run along the real axis of the p plane, with

a ‘jump’ just under p = iN . We get,

ĜX̄(X,X ′, µ) =

∫

Cs

dp

4πp

Γ(−ip−N + 1)Γ(ip +N)

(−1)−ip−N

×R(p)e−ipX̄W(p)(µ)

+AeNX̄ +BeNX̄X̄ + CeNX̄ ∂

∂p
Wp(µ)|p=iN (6.30)

After the analytic continuation,

X = T + i
π

2
, µ = il (6.31)

we finally obtain,

GT̄ (T, T ′, l) = Cs0

∫

Cs

dpΓ(ip +N)Γ(−ip+N)Re−(N+ip)T̄Y(p)(il)

+A′ +B′T̄ + C ′ ∂
∂p
Yp(il)|p=iN (6.32)

where we have conveniently defined,

Y(p)(il) ≡ F

(
N + ip,N − ip;N +

1

2
; 1 − z

)∣∣∣∣
z=cosh2 l

2

(6.33)

and we have gotten rid of the hat on the propagator by multiplying e−NT̄ .

6.6 A gauge argument

Let’s examine the terms,

A′ +B′T̄ +C ′ ∂
∂p
Yp(il)|p=iN (6.34)

of (6.32).
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The first two terms, A′ + B′T1 + B′T2 vanish when we take derivatives with respect

to both points showing up in the two point function. In other words, these terms are pure

gauge. Getting rid of this term we can write,

GT̄ (T, T ′, l) = Cs0

∫

Cs

dpΓ(ip +N)Γ(−ip +N)Re−(N+ip)T̄Y(p)(il) +KsN
∂

∂p
Y(p)(il)|p=iN

(6.35)

Note that

IsN ≡ KsN
∂

∂p
Y(p)(il)|p=iN ∼ l (6.36)

for large l.

6.7 The large l limit

Due to the identity between hypergeometric functions,

Yp(il) =
Γ(N + 1

2)Γ(−2ip)

Γ(N − ip)Γ(1
2 − ip)

GH(l,N + ip) +
Γ(N + 1

2)Γ(2ip)

Γ(N + ip)Γ(1
2 + ip)

GH(l,N − ip) (6.37)

hence the first term in (6.35) can be written as,

ĜT̄ = Cs0

∫

Cs

dpRe−(N+ip)T̄

[
Γ(−ip)Γ(ip+N)

2−2ip−1/2
GH(l,N + ip)

+
Γ(ip)Γ(−ip +N)

22ip−1/2
GH(l,N − ip)

]
(6.38)

Define the contour Cs− to be the contour coming from −i∞ on the left side of the

imaginary axis, pivoting just under p = iN and going back down to −i∞ on the right side

of the imaginary axis. Define the contour Cs+ to be the contour coming from i∞ on the left

side of the imaginary axis, pivoting around p = iN and going back up to i∞ on the right side

of the imaginary axis. Then we may deform the contour of integration for each term to be,

GT̄ = Cs0

∫

Cs−

dpRe(−N−ip)T̄ Γ(−ip)Γ(ip +N)

2−2ip−1/2
GH(l,N + ip)

+Cs0

∫

Cs+

dpRe(−N−ip)T̄ Γ(ip)Γ(−ip +N)

2−2ip−1/2
GH(l,N − ip)

≡ Is− + Is+ (6.39)

The poles of the integrand of Is+ are given as the following.

1. p = in for integers n.

2. p = −i(N + n) for non-negative integer n.

3. The poles of R.

The only feature we should pay attention to is that p = iN is a double pole for even

dimensions. All other poles that contriubte are all simple poles.

The poles of the integrand of Is− are given as the following.

1. p = in for integers n.
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2. p = i(N + n) for non-negative integer n.

3. The poles of R.

The poles that contribute will in general all be simple poles.

We can finally write out,

Is− + Is+ + IsN =

∞∑

n=1

Asne
(−N+n)T̄GH(l,N + n)

+
0∑

n=−∞
Bsne

(−N+n)T̄GH(l,N − n)

+
∑

ian: all poles of R

Csne
(−N+an)T̄Gij

H i′j′(l,N − an)

+δN,[N ](DsN T̄GH(l, 2N) + EsN
∂

∂∆
GH(l,∆)|∆=2N )

+KsN
∂

∂p
Y(p)(il)|p=iN (6.40)

Note that at large l,
∂

∂∆
GH(l,∆)|∆=2N ∼ le−2Nl (6.41)

6.8 The accidental double pole

One thing we must mention about the expression (6.40) for the scalar propagator is that

the double pole p = iN that arises is purely a coincidence coming from our assumption

that the scalar is massless on both sides of the bubble wall. There is no reason that this

should be the case in general for minimally coupled scalars.

One minimally coupled scalar we know that exists in our model is the scalar field

φ, namely the modulus field. In the case of this field, it is certainly natural to assume

a mass at least in the false vaccum. This would modify (6.4) so that U(X) → U(X) +

m2a(X)2Θ(X −X0). Gp(X,X
′) used in the sum (6.4) would have to be modified. If we

assume the scalar to be massless in the true vacuum, it would still be of the form (3.41)

but the reflection coefficient, R(p) would be modified. In fact, as pointed out in [5], this

shifts the pole at p = iN to p = i(N − ǫ) where ǫ > 0.

Hence in general, the expression (6.40) would be modified to

GT̄ =
∞∑

n=1

Asne
(−N+n)T̄GH(l,N + n)

+

0∑

n=−∞
Bsne

(−N+n)T̄GH(l,N − n)

+
∑

ia′

n: all poles of R′

Csne
(−N+a′

n)T̄Gij
H i′j′(l,N − a′n) (6.42)

Note that for the graviton case, nothing of this sort happens; the graviton is massless

on both sides of the wall. The reflection coefficient R(p) is given exactly by (3.37)
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rendering the pole at p = iN to be at least doubly degenerate. Unlike for the case of the

scalar that provides the tunneling, the logarithmic piece seems to be a crucial element of

the graviton propagator.

7 Speculation and outlook

7.1 Holographic correspondence

For the moment, let’s be optimistic and assume that an AdS/CFT like correspondence

exists for a bulk theory in the flat time-like region of the D dimensional CDL background

and the SD−2 boundary at spacelike infinity. In this section, we will try to make some

suggestions of what such a theory would look like.

For the sake of simplicity of argument, let’s assume the scalar mass is zero on both

sides of the wall. This is because we don’t want to introduce a mass scale other than the

size of the wall, which comes from the geometry of the background.

FSSY suggested in [5] that in the 4D case the field theory in the time-like flat bulk

corresponds to a Liouville theory on the S2 boundary. In the process they have identified

the time coordinate with the Liouville field of the boundary(L = 2T ). In that sense, we

can view time being emergent from a Liouville field.

We can certainly see something similar in general dimensions. By writing out the two

point functions as we have, (more precisely, by arranging the terms according to the scaling

behavior with respect to eT̄ ) we see that the two point functions(both for the spin 2 and 0

case) can be basically written as a sum of three kinds of terms,

e−(N+n)T1e−(N+n)T2GH(l,N + n) n : non-negative integers

e−(N−an)T1e−(N−an)T2GH(l,N − an) ian : poles of R
e−2NT̄ e(N+n)T1e(N+n)T2GH(l,N + n) n : non-negative integers (7.1)

where GH(l,∆) is a dimension ∆ propagator with a given spin on HD−1. (There are

terms that certainly don’t fit in to this framework, and we will discuss them later.) If we

assume the existence of a holographic duality of a field theory in this background, it is very

tempting to view the time T as a dilatonic field on Σ by writing the propagator out this way.

Indeed, if we take a slice of our space, (T (x), x) where x = (~x, z) are the Poincare

coordinates on HD−1, the propagator restricted to this slice can be written as a sum of

e−(N+n)T (x1)e−(N+n)T (x2)GH(x1, x2, N + n) (7.2)

e−(N−an)T (x1)e−(N−an)T (x2)GH(x1, x2, N − an) (7.3)

e−2NT̄ e(N+n)T (x1)e(N+n)T (x2)GH(x1, x2, N + n) (7.4)

If we take these to Σ by taking z → 0 and stripping away the z dependence by defining
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T (~x) ≡ limz→0 T (~x, z) we get,

e−(N+n)T ( ~x1)e−(N+n)T ( ~x2)

| ~x1 − ~x2|2(N+n)
(tij i′j′) (7.5)

e−(N−an)T ( ~x1)e−(N−an)T ( ~x2)

| ~x1 − ~x2|2(N−an)
(tij i′j′) (7.6)

(e−2NT̄ )
e(N+n)T ( ~x1)e(N+n)T ( ~x2)

| ~x1 − ~x2|2(N+n)
(tij i′j′) (7.7)

where tij i′j′ given by (5.18) is multiplied to each scalar part for the tensor two point

function. By (5.16), only the components with indices in the tangential directions survive

at the boundary. tij i′j′ actually is proportional to that given in equation (2.18) of [19].

We can see that the first two terms are of the same form as two point functions of (quasi-

)primary operators of a CFT given in [19] in a dilatonic background 2T (~x), and the last

with −2T (~x) multiplied by an additional prefactor.

What these two kinds of propagators mean is not clear, but it is possible that the

graviton and scalar field correspond to a sum of spin 2 and spin 0 operators living on the

boundary with definite scaling dimensions.

One imaginable scenario is that we have 2 CFTs, CFT1 and CFT2 coupled to possibly

a gravity theory such that the action is given by,
∫

L1

(
Ω1 = e2T

)
+

∫
L2

(
Ω2 = e−2T

)
(7.8)

Where Li(Ωi) denotes the CFTi lagrangian with local scaling Ωi. This is due to the

fact that we have two distinguishable contributions to our propagator: the waves going

toward the boundary wall and the waves coming from the boundary wall. If our bulk field

corresponds to an operator sum,

φ→ O ≡
∑

∆1

O1(∆1) +
∑

∆2

e−2NTO2(∆2) (7.9)

with O1 being primary operators in CFT1 and O2 being primary operators in CFT2, the

two point function of O, with fixed T (~x) would indeed look like something we have.4

A few comments are to be made. Trying to interpret the two point function this

way, we notice that we have operators that aren’t of dimension N + n, namely ones with

dimension N − an where an depends on the bubble wall position. (More precisely put, an

are real poles of the function,

F (−N + 1, N + 1; 1 + an; t)

F (−N,N ; 1 + an; t)
(7.10)

for t = e−X0

2 cosh X0
.) This means that we have operators with anomalous dimensions, depend-

ing on a tunable parameter of the theory, X0. If we give a mass to the scalar, the terms

4An alternative interpretation is offered in [6] where it is conjectured that there is only one CFT

and O1 and O2 are interpreted as renormalization invariant(“proactive”) and renormalization covari-

ant(“reactive”) operators.
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showing up in the scalar propagator would depend on the mass as well. But the point is

that we have a dimensionful parameter coming from the geometry of the background, and

that the anomolous dimensions of operators are related to this by an analytic function.

Also, thinking of graviton fields on the boundary as dimension 0 operators, we have

a natural interpretation for the logarithmic term. As we can see from the terms show-

ing up in the expansion for the graviton propagator written out in section 5.1, it can be

written out as a sum of propagators that are well behaved at the boundary, plus a loga-

rithmic(dimension zero) piece. We’ve seen in section 5.2 that this piece has a fluctuation

the size of the background curvature. This suggests that the boundary theory should have

geometric fluctuations, which indeed is coherent with the conjecture that T is emergent

from a dilatonic field on the boundary theory. Actually, to stretch our conjecture a bit

more, it is possible that CFT1 mentioned above contains gravity where the fluctuation of

T corresponds to the dilaton. All such speculation is coherent with the two point function

we have obtained, but much more evidence would be needed to back up this proposal.

We also note that the coefficients showing up for the three kinds of propagators in the

propagator sum depend on the reflection coefficient, and in the thin wall limit, ultimately

on the bubble wall position. If we assume that indeed our bulk fields correspond to a sum

of operators on the boundary, then how they are summed to give a corresponding bulk

field is dependent upon the bubble wall position.

Another issue we must address are the irregular correlators that show up for operators

of dimension, ∆ = (D − 2), (D − 3). These can be seen in equations, (5.7) and (5.9). The

propagator corresponding to ∆ = (D − 3) is easy to think about. In the even dimensional

case, they just are propagators of operators of dimension (D− 3). In the odd dimensional

case, the leading order behavior is of dimension (D− 1) (∼ zD−1) which doesn’t match its

scaling dimension with respect to T . We don’t quite understand this piece and will ignore

it, as it disappears faster than it should as z → 0. Under this prescription, N + (N − 1) =

(D− 3) is not a special case. In even dimensions, (N − 1) is an integer, so it is natural for

an N + (N − 1) dimensional operator to show up in the sum. In odd dimensions, (N − 1)

is not an integer, so an N + (N − 1) dimensional operator doesn’t show up in the sum.

The interpretation of the dimension (D − 2) piece seems to be trickier. Just as with

the (D − 3) dimensional propagators, let’s choose to discard the pieces with leading order

behavior ∼ zD. Then, if we try to interpret it as a stress energy tensor as we have suggested

in section 5.3, we see that it only exists for CFT2, and in the even dimensional case, is

obstructed by a logarithmic term. The lograrithmic term causes a problem because it

renders the stress energy tensor to be non-transverse. How to treat this is not entirely

clear at the moment. This is because we have a dimension zero operator in CFT1 with the

same eT̄ power as the stress energy tensor of CFT2. It would be comforting if we could just

get rid of the logarithmic term by claiming that it comes from the dimension zero operator

and ignore it, but at the moment it stands as a term we have to deal with.

Also, the fact that a dimension (D−2) operator doesn’t show up for CFT1 is interest-

ing. We have conjectured that gravity would live in CFT1, so it might be that only CFT1

respects the full diffeomorphism invariance rendering T ij
1 = 0, and CFT2 only responds to

dilatonic fluctuations.
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There is a different interpretation of this from the framework of [6]. In this case, there

is only one stress energy tensor for the theory in the first place. The existence of a non-zero

stress energy tensor will be an indication that the Liouville field has decoupled from the

rest of the theory at some fixed point.

As we have already mentioned, the boundary theory has a tunable parameter: the

bubble wall position. We have seen that the bubble wall position determines the corre-

spondence between fields and operator sums. It also determines the dimensions of operators

that come from the pole of the reflection coefficient. We have seen in section 5.4 that this

is conspicuous in odd dimensions, as the reflection coefficient has an infinite number of

poles in this case. Tuning the bubble wall position also seems to trigger some kind of phase

transition in odd dimensions, as nothing of the sort happens in even dimensions.

This may be attributed to the fact that for a CDL instanton solution, only the bubble

size 1
cosh X0

is specified [10]. That is, if X0 = a(> 0) is a good instanton solution, so is

X0 = −a. The only difference between the two solutions is that the former has a smaller

portion of dS in it. If we assume some kind of duality between the field theories with the

two instanton solutions as their backgrounds, X0 = 0 would be a fixed point of the theory.

Why this stands out only in odd dimensions is not clear at the moment.

7.2 Outlook

Although the graviton propagator written out in section 5.1 and the scalar propagator

written out in section 6.8 doesn’t provide any conclusive evidence of a holographic duality

of two theories we can expect to fathom, assuming the latter certainly gives rise to many

exciting possibilities.

If indeed such a correspondence were established, we will be able to gain a route to

access a very novel kind of field theory; that is, one on Euclidean space with two CFTs

(one possibly containing gravity) coupled in a rather peculiar way. This theory would have

a tunable parameter, and might have a phase transition in odd dimensions.
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A The asymptotic behavior of R for odd dimensions

In order to examine the the poles of R in the limit k → −i∞ it is convenient to consider

the asymptotic behavior of sinπxF (−N,N, 1 + x, t) in the limit x → −∞ where we have
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cancelled all the poles of the hypergeometric function by the multiplication of the sine

function. This is because we are interested in the imaginary poles of F (−N + 1, N + 1; 1−
ik; t)/F (−N,N ; 1 − ik; t) for k → −i∞ and we know that the denominator gets rid of the

poles, ik = integer coming from the numerator, and hence our interest lie in the zeros of

sinπxF (−N,N, 1 + x, t).

We use the relations,

F (a, b; c; z) = (1 − z)c−a−bF (c− a, c− b; c; z) (A.1)

Γ(z)Γ(1 − z) = π csc πz (A.2)

and

F (a, b; c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b; a+ b− c+ 1; 1 − z)

+(1 − z)c−a−b Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F (c− a, c− b; c− a− b+ 1; 1 − z) (A.3)

to obtain

sinπxF (−N,N ; 1 + x; t) =

Γ(−x−N)Γ(−x+N)

Γ(−x)2

[(
t

1−t

)−x(1−t
−x

)
N sinπNF (1+N, 1−N; 1 − x; t)

+ sinπxF (−N,N ;−x; 1 − t)

]
(A.4)

First note that for x→ −∞

Γ(−x+ a)Γ(−x− a)/Γ(−x)2 ≈ 1 (A.5)

for any fixed real number a. Also in this limit,

F (a, b;−x; z) = 1 + O
(

1

|x|

)
(A.6)

so up to leading order in 1/|x| we get,

sinπxF (−N,N ; 1 + x; t) ≈
(

t

1 − t

)−x(1 − t

−x

)
N sinπN + sinπx (A.7)

In the case t/(1− t) ≤ 1 we see that the first terms in this equation vanishes in the desired

limit. For t/(1 − t) > 1, the second term becomes irrelevant.

Hence we can write the asymptotic behavior for our function in the limit x→ −∞ as

the following.

sinπxF (−N,N ; 1 + x; t) ≈
{

[(1 − t)N sinπN ] (t/(1−t))−x

−x t > 1/2

sinπx t ≤ 1/2
(A.8)
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Note that we expect an infinite number of real zeros in x of F (−N,N ; 1 + x; t) for

t ≤ 1/2 where for t > 1/2 the number of real zeros becomes finite.

Now note that since R is analytic for general t, for a given neighborhood of such t, the

number of poles should be the same. Since R has an infinite number of imaginary poles as

k → −i∞ for t ≤ 1/2, we know that the number of poles of R in the lower half plane of k

should be infinite for a given neighborhood around t = 1/2. But we now also know from

the asymptotic behavior of sinπxF (−N,N, 1+x, t) that R has a finite number of poles on

the lower imaginary axis. Hence R has an infinite number of poles that aren’t imaginary

in the lower half plane for 1/2 < t < 1/2 + ǫ for some ǫ > 0.

One might question the validity of this argument by questioning the statement that

R(ix) has an infinite number of real poles at t = 1/2. Since t = 1/2 is a marginal value,

one might feel that the argument based on the x → −∞ behavior of the function might

not hold up. That is, it is possible that as t → 1/2−, xM > 0 for which at x < −xM

we may safely approximate sinπxF (−N,N ; 1 + x; t) ≈ sinπx might tend to infinity which

would render the previous argument invalid.

Fortunately, we can explicitly prove that R(ix) has an infinite number of real poles for

t = 1/2, which goes like the following. Let’s deal with R directly for simplicity.

We write,

R(ix) =
N(1 − t)F (−N + 1, N + 1; 1 + x; 1/2)

(x−N)F (−N,N ; 1 + x; 1/2)
(A.9)

For sake of convenience, we will prove the equivalent statement that,

f(x) ≡ N

4

F (−N + 1, N + 1; 1 + x; 1/2)

F (−N,N ; 1 + x; 1/2)
(A.10)

has an infinite number of real poles.

Using the equalities,

F (−N + 1, N + 1; 1 + x; 1/2) =
x+N

N
F (−N,N + 1; 1 + x; 1/2)

−x−N

N
F (−N + 1, N ; 1 + x; 1/2) (A.11)

F (−N,N ; 1 + x; 1/2) =
1

2
F (−N,N + 1; 1 + x; 1/2)

+
1

2
F (−N + 1, N ; 1 + x; 1/2) (A.12)

and

F (a, 1 − a; 1 + x; 1/2) = 2−xπ1/2 Γ(1 + x)

Γ
(

1
2a+ 1

2x+ 1
2

)
Γ
(
−1

2a+ 1
2x+ 1

) (A.13)

we get,

f(x) ≡
1

Γ(a+1/2)Γ(a+N) − 1
Γ(a)Γ(a+N+1/2)

1
Γ(a+1/2)Γ(a+N+1) + 1

Γ(a+1)Γ(a+N+1/2)

(A.14)
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Figure 7. The plot a vs. g(a).

where a = 1
2(x−N). Note that written in this way, both the numerator and denominator are

analytic functions with no poles in the x plane. In order find the poles of f(x), all we have

to do is find the zeros of the denominator that aren’t cancelled by a zero of the numerator.

Define the function,

g(a) ≡ Γ(a)

Γ(a+ 1/2)
(A.15)

Then the zeros of the numerator come from the equation,

g(a) = g(a+N) (A.16)

and the zeros of the denominator come from,

g(a + 1/2) = −g(a+N + 1/2) (A.17)

From the analytic property of Γ(a), we can infer that of g(a). To sum up, g(a) has the

following properties.

1. For a > 0, g(a) monotonically decreases from +∞ at a = 0+ to 0 as a→ ∞.

2. For negative integer n, g(a) monotonically decreases in the interval (n, n + 1) from

g(n + 0) → ∞ to g(n + 1 − 0) → −∞.

3. For negative integer n, g(n + 1/2) = 0.

These facts are evident in figure 7.

Hence for half integer N = M +1/2, there are M roots to g(a) = g(a+N) each in the

interval, (n, n+ 1/2) for n = −1, . . . ,−M .

Let’s get to g(b) = −g(b + N). First of all, there is one root in each interval (n +

1/2, n + 1) for negative integer n. Also, there is one root in each interval (n, n + 1/2) for

integer n < −M .

Translating this for a = b− 1/2, the roots are given as the following.

1. There is one root in each interval (n, n+ 1/2) for negative integer n.
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2. There is one root in each interval (n− 1/2, n) for integer n < −M .

Hence we see that there are an infinite number of negative zeros appearing in every

1/2 length interval in the denominator that aren’t cancelled by zeros of the numerator.

This completes the proof.

B The explicit expression for wI(αp) and Qp

Defining αp as,

αp(z) = F

(
D + 2

2
+ ip,

D + 2

2
− ip;

D + 3

2
; 1 − z

)
(B.1)

we get,

w1(αp) =
4(D − 2)

D(D − 3)

[(
p2 − 3

4
D2 + 2D + 1

)
z(z − 1) − D(D − 3)

4

]
αp(z)

+
8(D − 2)

D(D + 3)

(
p2 + (

D + 2

2
)2
)
z

(
z − 1

2

)
(z − 1)βp(z)

w2(αp) = (1 − z)

[
2(D − 2)2

D(D − 3)

(
p2 − 3

4
D2 + 2D + 1

)
z + (D − 1)(D − 2)

]
αp(z)

−4(D − 2)2

D(D + 3)

(
p2 +

(
D + 2

2

)2
)
z(z − 1)

(
z − D − 1

D − 2

)
βp(z)

w3(αp) =

[
−2(D − 2)2

D(D − 3)

(
p2 − 3

4
D2 + 2D + 1

)
z(z − 1) +

(D − 1)(D − 2)

2

]
αp(z)

−4(D − 2)2

D(D + 3)

(
p2 +

(
D + 2

2

)2
)
z

(
z − 1

2

)
(z − 1)βp(z) (B.2)

where βp is defined as,

βp(z) = − (D + 3)/2

(N + 2)2 + p2

dαp(z)

dz
(B.3)

Also,

Qp =

[
iΓ(D/2)D(D − 3)

4πD/2(D − 2)!(D − 2)2(D2 − 1)

]
p(p2 + (N + 1)2)Γ(−ip +N − 1)

Γ(−ip−N + 2)
(B.4)

C Transverse traceless tensor propagators in H(D−1)

We wish to examine the traceless spin 2 particle propagator on HD−1 with mass m. Note

that we know from AdS/CFT that this taken to the boundary corresponds to the prop-

agator of symmetric traceless tensor operators with dimension ∆ = N +
√
N2 +m2 (see,

for example, [17]).
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The equation for the propagator for a massive traceless spin 2 particle in H(D−1) can

be derived from the action,

∫
dD−1√g

(
R − 2Λ +

1

2
m2hijhij

)
(C.1)

where gij = γij + hij with the HD−1 metric γij . R is the Ricci scalar for the metric gij We

only focus on the traceless part of the spin 2 tensor for now, for reasons that will soon be

clear. All indices are raised and lowered by the background metric.

We work with the background curvature radius, R2 = −1. Then the Ricci scalar of

the background is given to be −(D − 1)(D − 2), and the cosmological constant would be

−1
2(D − 2)(D − 3).

This can be perturbed to give the equations of motion ([20]),

�hij + gij∇k∇lhkl −∇j∇kh
k
i −∇i∇kh

k
j

+2R k l
i j hkl + 2Rk

i hkj −Rhij + 2Λhij = m2hij (C.2)

where the covariant derivatives, the Ricci tensors/scalar and the Riemann tensors all are

given with respect to the background metric.

The l.h.s. of this equation has zero divergence. This can be seen by explicit calcula-

tion, or from the Bianchi identity. Hence for massive tensors, the transverseness of the

propagator would not be a gauge condition, it would be a constraint coming from the

equation of motion.

Using the transverseness of hij , the equation of motion reduces to

(� + 2 −m2)hij = 0 (C.3)

The equation for the propagator can be obtained to be,

(
−�̃1 − 2 +m2

)
Gij

M i′j′(l(H1,H2),m
2) =

1√
γ

(
γ

(i
(i′γ

j)
j′) −

1

D − 1
γijγi′j′

)
δ(H1,H2)

(C.4)

with the constraint,

∇aG
ij
M i′j′(l(H1,H2),m

2) = 0 (C.5)

Note that the delta function on the righthand side of the equation for the propagator is

not projected to be transverse, so it is actually zero for distinct H1 and H2.

We can solve this by following the steps sketched in [14], where first we solve,

(
−�̃1 − 2 +m2

)
Gij

M i′j′

(
l(H1,H2),m

2
)

= 0 (C.6)

for the maximally symmetric bitensor but now take the solution most singular at l = 0 and

obtain the multipicative constant by comparing it to the flat limit.

This can be done via the exact same procedure we obtained W ij
(p)i′j′ , but we impose

different boundary conditions as we are working in a non-compact space. The solution is,

Gij
M i′j′(l,m

2) = A(m2)wI
(
ai

√
N2+m2

)
tijI i′j′ |z=cosh2 l

2
(C.7)
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where we define,

ap(z) =

(
1

z

) (D+2)
2

−ip

F

(
D + 2

2
− ip,

1

2
− ip; 1 − 2ip;

1

z

)
(C.8)

A(m2) is some constant and tijI i′j′ and wI(ap) are given by (3.47), (3.48), (3.49), and (B.2).

From the fact that

ap(z) ∼
(

1

z

) (D+2)
2

−ip

for z → ∞ (C.9)

we see that for z → ∞

wI(ap)t
ij
I i′j′ ∼

(
1

z

)N−ip

tiji′j′ (C.10)

Hence we notice that the scaling dimension of wI(aix)tijI i′j′ is ∆ = N + x. This can

be seen by writing the geodesic length in HD−1 in Poincare coordinates. If we write the

metric as,

ds2 =
dz2 + dx2

1 + · · · + dx2
D−2

z2
(C.11)

the length of the geodesic connecting the two points (z, ~x) and (z′, ~x′) is given as,

cosh2 l

2
=

(z + z′)2 + (x− x′)2

zz′
(C.12)

so in the limit, z, z′ → 0,

wI(aix)tijI i′j′ ∼
(

cosh2 l

2

)−N−x

tiji′j′ ∼ zN+xz′N+x(x− x′)−2N−2xtij i′j′ (C.13)

We wish to extend the propagator Gij
M i′j′ so it could have a general scaling dimension.

But as can be seen from the expression (C.7), a massive HD−1 propagator with mass m has

dimension, ∆ = N +
√
N2 +m2. Hence the pieces with dimension ∆ < N can’t possibly

be written in terms of massive propagators.

Also A(m2) exhibits singular behavior (hence forbidding the propagator of having

certain scaling dimensions) if we try to generalize (C.7) by replacing i
√
N2 +m2 by i(∆−x).

A(∆) is evaluated up to a trivial multiplicative factor explicitly in appendix D, and we will

address relevant issues there.

The important conclusion is that we will define the “generalized Green function”

Gij
H i′j′(l,∆) = wI(ai(∆−N))t

ij
I i′j′ |z=cosh2 l

2
(C.14)

that is, as the maximally symmetric bitensor with definite scaling dimension ∆. We note

that,

Gij
H i′j′(l,∆) ∼ C(∆−2N)(∆−2N+ 1)e−∆ltij i′j′ + O

(
e−(∆+2)l

)
(C.15)

∼ C(∆−2N)(∆−2N+ 1)
z∆z′∆

|x − x′|2∆ t
ij

i′j′ + O
(
z∆+2z′∆+2

|x− x′|2∆+4

)
(C.16)
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for all non-problematic(we will shortly explain what we mean by ‘problematic’) ∆. Also,

Gij
H i′j′(l,∆) ∝ Gij

M i′J ′(l,∆(∆ − 2N)) (C.17)

for ∆ > N, ∆ 6= 2N .

One thing we must note is that Gij
H i′j′(l, 2N) is not a propagator for a spin 2 tensor

with m2 = 0. This is because that the equation for the transverse traceless massless spin

2 propagator is,

(
−�̃1 − 2

)
Gij

M i′j′(l(H1,H2), 0) =
1√
γ
δij

i′j′(H1,H2) (C.18)

where the delta function on the r.h.s. is a delta function projected on to transverse-traceless

modes, so it is not zero for distinct H1,H2 in general. This situation arises because the

transverseness of the propagator doesn’t come from the equation of motion and has to be

imposed as a gauge condition. This propagator is written out in a form compatible with

our formalism in [21].

One more thing we have to be concerned about is that ap(and hence Gij
H i′j′(l,N − ip))

is singular for 1 − 2ip = −2n + 1 for positive n. We are spared from some worry because

in the case, 1 − 2ip = −2n we get,

ap(z) =

(
1

z

) (D+1)
2

−n

F

(
D + 1

2
− n,−n;−2n;

1

z

)
(C.19)

so the hypergeometric function becomes a polynomial, stopping short of the divergent

piece. So we just concern ourselves with the case, p = −in for positive integer n.

In appendix E we will show that by expanding around p = −in, we can write,

Gij
H i′j′(l,N − ip) =

1

p+ in
K−1,nG

ij
H i′j′(l,N + n) (C.20)

+H ij
0 i′j′(l,N − n) + (p+ in)H ij

1 i′j′(l,N − n) (C.21)

+O((p+ in)2) (C.22)

and that for large l,

H ij
0 i′j′(l,N − n) ∼ e−(N−n)ltiji′j′ (C.23)

H ij
1 i′j′(l,N − n) ∼ le−(N−n)ltiji′j′ (C.24)

D The graviton propagator in flat space

The graviton propagator in flat space can be obtained by

∫
dD−1k

(2π)D−1

i

k2 +m2

(
−δ(a(a′

δ
b)
b′) +

2

D − 2
ηabηa′b′ −

2(D − 3)

D − 2

kakbka′kb′

m4

+
2

D − 2

kakbηa′b′ + ηabka′kb′

m2
−
k(aδ

b)
(a′
kb′)

m2
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This can be written in the form (C.14). For f(x) ≡ m(D−3)/2

x(D−3)/2 K(D−3)/2(mx),

w1
flat(l) ∝ f(l) +

2(D − 3)

m4(D − 2)
(
f ′(l)
l3

− f ′′(l)
l2

) − 4

m2(D − 2)

f ′(l)
l

(D.1)

up to a constant independent of mass. For l → 0,

w1
flat(l) ∼

1

m4

1

lD+1
(D.2)

up to a constant independent of mass.

Now for l → 0 since

ap(z) ∼
Γ(1 − 2ip)Γ((D − 1)/2)

Γ
(

D+2
2 − ip

)
Γ
(

1
2 − ip

)
(

1

l

)(D−1)

(D.3)

we obtain

w1
p(l) ∼

Γ(1 − 2ip)

Γ
(

D+2
2 − ip

)
Γ
(

1
2 − ip

)
(

1

l

)(D+1)

(D.4)

up to a constant independent of p.

Comparing these two values for a given mass(with p = i
√
N2 +m2), we obtain up to

a non-singular constant,

A(m2) ∝ 1

m4

Γ
(

D+2
2 +

√
N2 +m2

)
Γ
(

1
2 +

√
N2 +m2

)

Γ(1 + 2
√
N2 +m2)

∝ 1

m4

Γ
(

D+2
2 +

√
N2 +m2

)

Γ(1 +
√
N2 +m2)

(D.5)

Trying to generalize this for a general scaling dimension we get,

A(∆) ∝ 1

(∆(∆ − 2N))2
Γ(∆ + 2)

Γ(∆ −N + 1)
(D.6)

This is singular for ∆ = 0, 2N and −n−1 for positive integer n. Also note that this is zero

for ∆ = N − n for positive integer n. This leads to the interesting fact that due to (C.20),

lim
∆→N−n

A(∆)Gab
H a′b′(l,∆) ∝ Gab

H a′b′(l,N + n) (D.7)

for positive integer n.

E Deconstructing singular tensor propagators

We deal with the singularity of Gij
H i′j′(l,∆) at ∆ = N−n for positive integer n by writing,

ap(z) =

(
1

z

) (D+2)
2

−ip

f(p, 2n− 1, z)

+
1

p+ in

(
i

2

)
(

(D+2)
2 − ip

)
2n

(
1
2 − ip

)
2n

2n!(1 − 2ip)2n−1

×
(

1

z

) (D+2)
2

−ip+2n

F

(
D + 2

2
− ip+ 2n,

1

2
− ip+ 2n; 2n + 1;

1

z

)
(E.1)
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where we have defined,

(x)n ≡ x(x+ 1) · · · (x+ n− 1) (E.2)

and f(p,m, z) is the polynomial

f(p,m, z) ≡
m∑

n=0

1

n!

((D + 2)/2 − ip)n(1/2 − ip)n
(1 − 2ip)n

(
1

z

)n

(E.3)

To put this in a form which is more useful, we expand the latter part of ap around p = −in
for which we get,

ap(z) =
1

p+ in
K−1,nain(z)

+



(

1

z

) (D+2)
2

−n

f−in(z) +K0,nain(z) + L0,ncin(z)




+(p+ in)


(I1,n ln z + J1,n)

(
1

z

) (D+2)
2

−n

f−in(z) +K1,nain(z)

+ L1,ncin(z) +M1,ndin(z)

]

+O((p+ in)2)

≡ 1

p+ in
K−1,nain(z) + h0,−in(z) + (p+ in)h1,−in(z)

+O((p+ in)2) (E.4)

Where we have conveniently defined,

f−in(z)≡ f

(
−in, 2n− 1,

1

z

)
(E.5)

cin(z)≡ ∂

∂p

(
1

z

) (D+2)
2

−ip+2n

F

(
D+2

2
−ip+2n,

1

2
−ip+2n; 2n+1;

1

z

)∣∣∣∣
p=−in

(E.6)

din(z)≡ ∂2

∂p2

(
1

z

) (D+2)
2

−ip+2n

F

(
D+2

2
−ip+2n,

1

2
−ip+2n; 2n+1;

1

z

)∣∣∣∣
p=−in

(E.7)

We can finally write,

Gij
H i′j′(l,N − ip) =

1

p+ in
K−1,nG

ij
H i′j′(l,N + n)

+H ij
0 i′j′(l,N − n) + (p+ in)H ij

1 i′j′(l,N − n)

+O((p+ in)2) (E.8)

where

H ij
0 i′j′(l,N − n) ≡ wI(h0,−in(z))tijI i′j′ (E.9)

H ij
1 i′j′(l,N − n) ≡ wI(h1,−in(z))tijI i′j′ (E.10)
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Note that for l → ∞ (since n > 0),

h0,−in(z) ∼ e
−

“

(D+2)
2

−n
”

l
(E.11)

h1,−in(z) ∼ le
−

“

(D+2)
2

−n
”

l
(E.12)

and hence,

H ij
0 i′j′(l,N − n) ∼ e−(N−n)ltij i′j′ (E.13)

H ij
1 i′j′(l,N − n) ∼ le−(N−n)ltiji′j′ (E.14)

F Degenerate modes of the graviton

In this section, we will identify the degenerate modes of the transverse-traceless graviton

propagator in HD−1.

We start with the scalar mode, E(p) such that,

�̃E(pv) = −(N2 + p2)E(pv) (F.1)

In HD−1 we find that,

�̃

(
∇̃i∇̃j −

γ̃ij

D − 1
�̃

)
E(pv) = (−N2 − p2 − 2(2N + 1))

(
∇̃i∇̃j −

γ̃ij

D − 1
�̃

)
E(pv) (F.2)

Also,

(
∇̃i∇̃i −

δi
i

D − 1
�̃

)
E(pv) = 0 (F.3)

∇̃i

(
∇̃i∇̃j −

γ̃ij

D − 1
�̃

)
E(pv) =

D − 2

D − 1
(−N2 − p2 − (2N + 1))∇̃jE

(p) (F.4)

Hence (∇̃i∇̃j − γ̃ij

D−1�̃)E(pv) is a symmetric transverse traceless spin 2 mode for p =

i(N + 1), and hence its eigenvalue with respect to �̃ would be −2N − 1. Therefore this is

degenerate with the spin 2 modes r
(pu)
ij (whose eigenvalues are given by −(N2 + 2 + p2))

with p = i(N − 1).

For the vector mode, F
(pw)
i such that,

�̃F
(pw)
i = −(N2 + p2 + 1)F

(pw)
i (F.5)

we find in HD−1,

�̃F
(pw)
(i|j) = (−N2 − p2 − 1 − (2N + 2))F

(pw)
(i|j) (F.6)

Also since F
(pv)
i are transverse,

F
(pv)
(i|i) = 0 (F.7)

∇̃iF
(pw)
(i|j) = (−N2 − p2 − 1 − 2N)F

(pw)
j (F.8)
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So F
(pw)
(i|j) is a symmetric transverse traceless spin 2 mode for p = i(N + 1), and hence

its eigenvalue with respect to �̃ would be −2. Therefore this is degenerate with the spin 2

modes r
(pu)
ij (whose eigenvalues are given by −(N2 + 2 + p2)) with p = iN .

Now let’s show that all r
′(i(N−1)u)
ij come from E(i(N+1)v) and that all r

′((iN)u)
ij come

from F
(i(N+1)w)
i where r

′((p)u)
ij are defined by (4.15).

Note that by the form of (∇̃i∇̃j − γ̃ij

D−1�̃)E(pv), this has even parity, and hence this

certainly cannot saturate {r(pu)
ij }. But our objective would be to get rid of the modes

contributing to W ij
(p)i′j′ with p = iN, i(N − 1) in our propagator and as will be shown, this

can be done.

Define,

Z(p) =
∑

v

E(pv)†(H)E(pv)(H′) (F.9)

Zi
(p)i′ =

∑

v

F (pv)i†(H)F
(pv)
i′ (H′) (F.10)

for properly normalized, regular E(pv) and F
(pw)
i . These are maximally symmetric bitensors

as they are invariant under any isometries. Also, they show regular behavior at H = H′,
i.e. the coincident point. A covariant derivative of a maximally symmetric bitensor is also

a maximally symmteric bitensor, hence so are,

Zij
1(p)i′j′ =

(
∇̃i∇̃j − γ̃ij

D − 1
�̃

)(
∇̃i′∇̃j′ −

γ̃i′j′

D − 1
�̃

)
Z(p) (F.11)

Zij
2(p)i′j′ = Z

(i|j)
(p)(i′|j′) (F.12)

From the mode sum and by the behavior of the individual modes for p = i(N + 1),

Zij
1(i(N+1))i′j′ and Zij

2(i(N+1))i′j′ are symmetric, transverse, traceless maximally symmetric

bitensors behaving regularly at the coincident point, which satisfy,

�̃Zij
1(i(N+1))i′j′ = −(N2 − (N − 1)2 + 2)Zij

1(i(N+1))i′j′ (F.13)

�̃Zij
2(i(N+1))i′j′ = −(N2 −N2 + 2)Zij

2(i(N+1))i′j′ (F.14)

so we see that,

Zij
1(i(N+1))i′j′(l) ∝W ij

(i(N−1))i′j′(il) (F.15)

Zij
2(i(N+1))i′j′(l) ∝W ij

(iN)i′j′(il) (F.16)

where W ij
(p)i′j′ is defined in (3.45) and can be written alternatively as in (4.15). This is

because the conditions mentioned are all that we used in obtaining W ij
(p)i′j′ in the first

place. (We have used W ij
(p)i′j′ instead of Zij

(p)i′j′ here due to the fact that Zij
(p)i′j′ may have

poles for the values concerned.) If indeed this is true for some non-zero proportionality

constant, this means that the derivatives of E(i(N+1)v) and F
(i(N+1)w)
i give all the modes

{r′(i(N−1)u)
ij } and {r′((iN)u)

ij } respectively.
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The only potential problem lies in the fact that Zij
1(i(N+1))i′j′ and Zij

2(i(N+1))i′j′ might

be zero. From [14] and we see that,

Z(p) = CpF

(
N + ip,N − ip;N +

1

2
; 1 − z

)
(F.17)

Zi
(p)i′ = C ′

p

[
γ̃i

i′

(
2z(z − 1)

N

d

dz
+ (2z − 1)

)

+ nini′

(
2z(z − 1)

N

d

dz
+ (2z − 2)

)]
γp(z) (F.18)

for γp(z) ≡ F

(
N + 1 + ip,N + 1 − ip;N +

3

2
; 1 − z

)
(F.19)

and from [15] we see that

Cp ∝
[
p2 + (N − 1)2

]
Γ(ip +N − 1)Γ(−ip+N − 1)

Γ(ip)Γ(−ip) (F.20)

C ′
p ∝

[
p2 +N2

]
Γ(ip+N − 1)Γ(−ip +N − 1)

Γ(ip)Γ(−ip) (F.21)

up to a factor independent of p. Although Cp and C ′
p have poles, by direct calculation, we

can obtain non-zero, non-sigular Zij
1(i(N+1))i′j′ and Zij

2(i(N+1))i′j′ .

Of course Zij
1(i(N+1))i′j′ and Zij

2(i(N+1))i′j′ can be obtained explicitly to verify (F.15)

and (F.16).
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